Advertisement

Euler-Lagrange Network Dynamics

  • Jianjia WangEmail author
  • Richard C. Wilson
  • Edwin R. Hancock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10746)

Abstract

In this paper, we investigate network evolution dynamics using the Euler-Lagrange equation. We use the Euler-Lagrange equation to develop a variational principle based on the von Neumann entropy for time-varying network structure. Commencing from recent work to approximate the von Neumann entropy using simple degree statistics, the changes in entropy between different time epochs are determined by correlations in the degree difference in the edge connections. Our Euler-Lagrange equation minimises the change in entropy and allows to develop a dynamic model to predict the changes of node degree with time. We first explore the effect of network dynamics on three widely studied complex network models, namely (a) Erdős-Rényi random graphs, (b) Watts-Strogatz small-world networks, and (c) Barabási-Albert scale-free networks. Our model effectively captures the structural transitions in the dynamic network models. We also apply our model to a time sequence of networks representing the evolution of stock prices on the New York Stock Exchange (NYSE). Here we use the model to differentiate between periods of stable and unstable stock price trading and to detect periods of anomalous network evolution. Our experiments show that the presented model not only provides an accurate simulation of the degree statistics in time-varying networks but also captures the topological variations taking place when the structure of a network changes violently.

Keywords

Dynamic networks Approximate von Neumann entropy Euler-Lagrange equation 

References

  1. 1.
    Wolstenholme, R.J., Walden, A.T.: An efficient approach to graphical modeling of time series. IEEE Trans. Signal Process. 63, 3266–3276 (2015). ISSN 1053-587XMathSciNetCrossRefGoogle Scholar
  2. 2.
    Ye, C., Torsello, A., Wilson, R.C., Hancock, E.R.: Thermodynamics of time evolving networks. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 315–324. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18224-7_31 Google Scholar
  3. 3.
    Ernesto, E., Naomichi, H.: Communicability in complex networks. Phys. Rev. E 77, 036111 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Han, L., Wilson, R.C., Hancock, E.R.: Generative graph prototypes from information theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2013–2027 (2015)CrossRefGoogle Scholar
  5. 5.
    Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.: From time series to complex networks: the visibility graph. Proc. Nat. Acad. Sci. 105(13), 4972–4975 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Loukas, A., Simonetto, A., Leus, G.: Distributed autoregressive moving average graph filters. IEEE Signal Process. Lett. 22(11), 1931–1935 (2015)CrossRefGoogle Scholar
  7. 7.
    Ye, C., Wilson, R.C., Hancock, E.R.: Correlation network evolution using mean reversion autoregression. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 163–173. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49055-7_15 CrossRefGoogle Scholar
  8. 8.
    Silva, F.N., Comin, C.H., Peron, T.K.D., Rodrigues, F.A., Ye, C., Wilson, R.C., Hancock, E., Costa, L.F.: Modular dynamics of financial market networks, pp. 1–13 (2015)Google Scholar
  9. 9.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale free random networks. Phys. A 272, 173–187 (1999)CrossRefGoogle Scholar
  11. 11.
    Wang, J., Wilson, R.C., Hancock, E.R.: Minimising entropy changes in dynamic network evolution. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR 2017. LNCS, vol. 10310, pp. 255–265. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58961-9_23 CrossRefGoogle Scholar
  12. 12.
    Watts, D., Strogatz, S.: Collective dynamics of ‘small world’ networks. Nature 393, 440–442 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, J., Wilson, R., Hancock, E.R.: Network entropy analysis using the Maxwell-Boltzmann partition function. In: The 23rd International Conference on Pattern Recognition (ICPR), pp. 1–6 (2016)Google Scholar
  14. 14.
    Wang, J., Wilson, R.C., Hancock, E.R.: Spin statistics, partition functions and network entropy. J. Complex Netw. 5, 1–25 (2017).  https://doi.org/10.1093/comnet/cnx017 MathSciNetGoogle Scholar
  15. 15.
    Han, L., Escolano, F., Hancock, E.R., Wilson, R.C.: Graph characterizations from von Neumann entropy. Pattern Recognit. Lett. 33, 1958–1967 (2012)CrossRefGoogle Scholar
  16. 16.
    Passerini, F., Severini, S.: The von Neumann entropy of networks. Int. J. Agent Technol. Syst. 1, 58–67 (2008)CrossRefGoogle Scholar
  17. 17.
    Yahoo! Finance. http://finance.yahoo.com

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jianjia Wang
    • 1
    Email author
  • Richard C. Wilson
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations