Advertisement

A Graph Theoretic Approach for Shape from Shading

  • Robert SchefflerEmail author
  • Ashkan Mansouri Yarahmadi
  • Michael Breuß
  • Ekkehard Köhler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10746)

Abstract

Resolving ambiguities is a fundamental problem in shape from shading (SFS). The classic SFS approach allows to reconstruct the surface locally around singular points up to an ambiguity of convex, concave or saddle point type.

In this paper we follow a recent approach that seeks to resolve the local ambiguities in a global graph-based setting so that the complete surface reconstruction is consistent. To this end, we introduce a novel graph theoretic formulation for the underlying problem that allows to prove for the first time in the literature that the underlying surface orientation problem is \(\mathcal {NP}\)-complete. Moreover, we show that our novel framework allows to define an algorithmic framework that solves the disambiguation problem. It makes use of cycle bases for dealing with the graph construction and enables an easy embedding into an optimization method that amounts here to a linear program.

Keywords

Shape from shading Ambiguity Configuration graph Cycle basis 

References

  1. 1.
    Abada, L., Aouat, S.: Tabu search to solve the shape from shading ambiguity. Int. J. Artif. Intell. Tools 24(5) (2015)Google Scholar
  2. 2.
    Abada, L., Aouat, S.: Improved shape from shading without initial information. Front. Comput. Sci. 11(2), 320–331 (2017)CrossRefGoogle Scholar
  3. 3.
    Bollobás, B.: Modern Graph Theory. Graduate Texts in Mathematics, vol. 184. Springer, Heidelberg (1998).  https://doi.org/10.1007/978-1-4612-0619-4 zbMATHGoogle Scholar
  4. 4.
    Bruss, A.R.: The eikonal equation: some results applicable to computer vision. J. Math. Phys. 23(5), 890–896 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bruss, A.R.: Is what you see what you get? In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1053–1056, August 1983Google Scholar
  6. 6.
    Chang, J.Y., Lee, K.M., Lee, S.U.: Shape from shading using graph cuts. Pattern Recogn. 41(12), 3749–3757 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-662-53622-3 zbMATHGoogle Scholar
  8. 8.
    Durou, J.D., Piau, D.: Ambiguous shape from shading with critical points. J. Math. Imaging Vis. 12(2), 99–108 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)CrossRefGoogle Scholar
  10. 10.
    Horn, B.K.P.: Shape from shading: a method for obtaining the shape of a smooth opaque object from one view. Ph.D. thesis, Massachusetts Institute of Technology (1970)Google Scholar
  11. 11.
    Horn, B.K.P., Brooks, M.J. (eds.): Shape from Shading. MIT Press, Cambridge (1989)Google Scholar
  12. 12.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)CrossRefGoogle Scholar
  13. 13.
    Kimmel, R., Bruckstein, A.M.: Global shape from shading. Comput. Vis. Image Underst. 62(3), 360–369 (1995)CrossRefGoogle Scholar
  14. 14.
    Köhler, E.: Recognizing graphs without asteroidal triples. J. Discret. Algorithms 2(4), 439–452 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Oliensis, J.: Uniqueness in shape from shading. Int. J. Comput. Vis. 6(2), 75–104 (1991)CrossRefzbMATHGoogle Scholar
  16. 16.
    Prados, E., Soatto, S.: Fast marching method for generic shape from shading. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 320–331. Springer, Heidelberg (2005).  https://doi.org/10.1007/11567646_27 CrossRefGoogle Scholar
  17. 17.
    Quéau, Y., Durou, J.-D.: Edge-preserving integration of a normal field: weighted least-squares, TV and \(L^1\) approaches. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 576–588. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18461-6_46 Google Scholar
  18. 18.
    Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  19. 19.
    Zhu, Q., Shi, J.: Shape from shading: recognizing the mountains through a global view. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1839–1846. IEEE, New York (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Robert Scheffler
    • 1
    Email author
  • Ashkan Mansouri Yarahmadi
    • 1
  • Michael Breuß
    • 1
  • Ekkehard Köhler
    • 1
  1. 1.Brandenburgische Technische Universität Cottbus-SenftenbergCottbusGermany

Personalised recommendations