Vehicle X-Ray Images Registration

  • Abraham MarcianoEmail author
  • Laurent D. Cohen
  • Najib Gadi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10746)


Image registration is definitely one of the most prominent techniques at the heart of computer vision research. Applications range from medical image analysis, remote sensing or robotics to security-related tasks such as surveillance or motion tracking. In our previous work, a solution was provided to address the registration problem involving top-view radiographic images of vehicles. A unidimensional minimization scheme was formulated along with a column-wise constancy constraint on the displacement field.

In this paper, we show that the proposed method is not sufficient in case of significant vertical shifts between the cars of both moving and static images. In fact, the radiated beam is triangular, thus any translated object is projected differently according to its distance to the x-ray source. We therefore add a 1D unconstrained optimization to the previous scheme for a y-direction correction. We also demonstrate that applying the vertical correction following our 1D optimization in the x-axis yields better results than performing a simultaneous minimization on both components.

Finally, the possible apparition of artefacts in the deformed image throughout the optimization process is analyzed. Diffusion and volume-preserving schemes are considered and compared in this regard.


Image registration Variational approach Energy minimization methods Difference detection Volume preservation 


  1. 1.
    Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press on Demand, Oxford (2004)zbMATHGoogle Scholar
  2. 2.
    Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration, vol. 6. SIAM, Philadelphia (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Marciano, A., Cohen, L.D., Gadi, N.: Vehicle X-ray scans registration: a one-dimensional optimization problem. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 578–589. Springer, Cham (2017). CrossRefGoogle Scholar
  4. 4.
    Fischer, B., Modersitzki, J.: Fast image registration: a variational approach. In: Psihoyios, G. (ed.) Proceedings of the International Conference on Numerical Analysis & Computational Mathematics, pp. 69–74. Wiley (2003)Google Scholar
  5. 5.
    Haber, E., Modersitzki, J.: A multilevel method for image registration. SIAM J. Sci. Comput. 27(5), 1594–1607 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)CrossRefGoogle Scholar
  7. 7.
    Haber, E., Modersitzki, J.: Numerical methods for volume preserving image registration. Inverse Probl. 20(5), 1621 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Haber, E., Modersitzki, J.: Image registration with guaranteed displacement regularity. Int. J. Comput. Vis. 71(3), 361–372 (2007)CrossRefGoogle Scholar
  9. 9.
    Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)CrossRefGoogle Scholar
  10. 10.
    Rohlfing, T., Maurer, C.R., Bluemke, D.A., Jacobs, M.A.: Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Trans. Med. Imaging 22(6), 730–741 (2003)CrossRefGoogle Scholar
  11. 11.
    Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE Trans. Med. Imaging 20(7), 568–582 (2001)CrossRefGoogle Scholar
  12. 12.
    Rueckert, D., Aljabar, P.: Non-rigid registration using free-form deformations. In: Paragios, N., Duncan, J., Ayache, N. (eds.) Handbook of Biomedical Imaging, pp. 277–294. Springer, Boston, MA (2015). Google Scholar
  13. 13.
    Younes, L.: Invariance, déformations et reconnaissance de formes, vol. 44. Springer Science & Business Media, Heidelberg (2003)zbMATHGoogle Scholar
  14. 14.
    Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)CrossRefGoogle Scholar
  15. 15.
    Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)CrossRefGoogle Scholar
  16. 16.
    Mang, A., Biros, G.: An inexact Newton-Krylov algorithm for constrained diffeomorphic image registration. SIAM J. Imaging Sci. 8(2), 1030–1069 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mang, A., Biros, G.: Constrained H1-regularization schemes for diffeomorphic image registration. SIAM J. Imaging Sci. 9(3), 1154–1194 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hameeteman, R., Veenland, J.F., Niessen, W.J.: Volume preserving image registration via a post-processing stage. In: Proceedings of SPIE, vol. 6288 (2006)Google Scholar
  19. 19.
    Fischer, B., Modersitzki, J.: Ill-posed medicine—an introduction to image registration. Inverse Probl. 24(3), 034008 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rühaak, J., König, L., Tramnitzke, F., Köstler, H., Modersitzki, J.: A matrix-free approach to efficient affine-linear image registration on CPU and GPU. J. Real-Time Image Process. 13(1), 205–225 (2017)CrossRefGoogle Scholar
  21. 21.
    Albrecht, T., Dedner, A., Lüthi, M., Vetter, T.: Finite element surface registration incorporating curvature, volume preservation, and statistical model information. Computational and Mathematical Methods in Medicine 2013, 14 p. (2013). Article no. 674273

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abraham Marciano
    • 1
    • 2
    Email author
  • Laurent D. Cohen
    • 1
  • Najib Gadi
    • 2
  1. 1.Université Paris-Dauphine, PSL Research University, CNRS, UMR 7534, CEREMADEParisFrance
  2. 2.Smiths DetectionVitry-sur-SeineFrance

Personalised recommendations