Advertisement

Luminance-Guided Chrominance Denoising with Debiased Coupled Total Variation

  • Fabien PierreEmail author
  • Jean-François Aujol
  • Charles-Alban Deledalle
  • Nicolas Papadakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10746)

Abstract

This paper focuses on the denoising of chrominance channels of color images. We propose a variational framework involving TV regularization that modifies the chrominance channel while preserving the input luminance of the image. The main issue of such a problem is to ensure that the denoised chrominance together with the original luminance belong to the RGB space after color format conversion. Standard methods of the literature simply truncate the converted RGB values, which lead to a change of hue in the denoised image. In order to tackle this issue, a “RGB compatible” chrominance range is defined on each pixel with respect to the input luminance. An algorithm to compute the orthogonal projection onto such a set is then introduced. Next, we propose to extend the CLEAR debiasing technique to avoid the loss of colourfulness produced by TV regularization. The benefits of our approach with respect to state-of-the-art methods are illustrated on several experiments.

Keywords

Colorization Denoising Color editing Color assignment 

Supplementary material

References

  1. 1.
    Bredies, K.: Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty. SFB Report 6 (2012)Google Scholar
  2. 2.
    Bredies, K., Holler, M.: Artifact-free decompression and zooming of JPEG compressed images with total generalized variation. In: Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J. (eds.) VISIGRAPP 2012. CCIS, vol. 359, pp. 242–258. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38241-3_16 Google Scholar
  3. 3.
    Brinkmann, E.M., Burger, M., Rasch, J., Sutour, C.: Bias-reduction in variational regularization. arXiv preprint arXiv:1606.05113 (2016)
  4. 4.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40(1), 120–145 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chien, C.L., Tseng, D.C.: Color image enhancement with exact HSI color model. Int. J. Innov. Comput. Inf. Control 7(12), 6691–6710 (2011)Google Scholar
  6. 6.
    Deledalle, C.A., Papadakis, N., Salmon, J., Vaiter, S.: CLEAR: covariant LEAst-square re-fitting with applications to image restoration. SIAM J. Imag. Sci. 10, 243–284 (2017)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fitschen, J.H., Nikolova, M., Pierre, F., Steidl, G.: A variational model for color assignment. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 437–448. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18461-6_35 Google Scholar
  8. 8.
    Goldluecke, B., Cremers, D.: An approach to vectorial total variation based on geometric measure theory. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 327–333 (2010)Google Scholar
  9. 9.
    Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004)CrossRefGoogle Scholar
  10. 10.
    Nikolova, M., Steidl, G.: Fast hue and range preserving histogram specification: theory and new algorithms for color image enhancement. IEEE Trans. Image Process. 23(9), 4087–4100 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Peter, P., Kaufhold, L., Weickert, J.: Turning diffusion-based image colorization into efficient color compression. IEEE Trans. Image Process. 26, 860–869 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pierre, F., Aujol, J.-F., Bugeau, A., Ta, V.-T.: Luminance-hue specification in the RGB space. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 413–424. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18461-6_33 Google Scholar
  13. 13.
    Pierre, F., Aujol, J.F., Bugeau, A., Papadakis, N., Ta, V.T.: Luminance-chrominance model for image colorization. SIAM J. Imag. Sci. 8(1), 536–563 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60(1), 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Williams, A., Barrus, S., Morley, R.K., Shirley, P.: An efficient and robust ray-box intersection algorithm. In: ACM SIGGRAPH 2005 Courses, p. 9 (2005)Google Scholar
  16. 16.
    Xiao, X., Ma, L.: Color transfer in correlated color space. In: ACM VRCIA 2006, pp. 305–309 (2006)Google Scholar
  17. 17.
    Yatziv, L., Sapiro, G.: Fast image and video colorization using chrominance blending. IEEE Trans. Image Process. 15(5), 1120–1129 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fabien Pierre
    • 1
    Email author
  • Jean-François Aujol
    • 2
  • Charles-Alban Deledalle
    • 2
  • Nicolas Papadakis
    • 2
  1. 1.Université de Lorraine, LORIA, CNRS, UMR 7503, INRIA projet MagritLorraineFrance
  2. 2.Univ. Bordeaux, IMB, CNRS, UMR 5251TalenceFrance

Personalised recommendations