Skip to main content

Nonlinear Compressed Sensing for Multi-emitter X-Ray Imaging

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2017)

Abstract

Compressed sensing is a powerful mathematical modelling tool to recover sparse signals from undersampled measurements in many applications, including medical imaging. A large body of work investigates the case with linear measurements, while compressed sensing with nonlinear measurements has been considered more recently. We continue this line of investigation by considering a novel type of nonlinearity with special structure that occurs in data acquired by multi-emitter X-ray tomosynthesis systems with spatio-temporal overlap. In [15] we proposed a nonlinear optimization model to deconvolve the overlapping measurements. In this paper we propose a model that exploits the structure of the nonlinearity and a nonlinear tomosynthesis algorithm that has a practical running time of solving only two linear subproblems at the equivalent resolution. We underpin and justify the algorithm by deriving RIP bounds for the linear subproblems and conclude with numerical experiments that validate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blanchard, J.D., Cartis, C., Tanner, J., Thompson, A.: Phase transitions for greedy sparse approximation algorithms. Appl. Comput. Harmonic Anal. 30, 188–203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blumensath, T.: Compressed sensing with nonlinear observations and related nonlinear optimisation problems. IEEE Trans. Inf. Theory 59, 3466–3474 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candes, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C., Huang, J.: Compressive sensing MRI with wavelet tree sparsity. In: Advances in Neural Information Processing Systems, pp. 1115–1123 (2012)

    Google Scholar 

  6. Choi, K., Wang, J., Zhu, L., Suh, T., Boyd, S., Xing, L.: Compressed sensing based cone-beam computed tomography reconstruction with a first-order method. Med. Phys. 37, 5113–5125 (2010)

    Article  Google Scholar 

  7. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Donoho, D.L., Johnstone, I.M.: Minimax estimation via wavelet shrinkage. Ann. Stat. 26, 879–921 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donoho, D.L., Tanner, J.: Precise undersampling theorems. Proc. IEEE 98, 913–924 (2010)

    Article  Google Scholar 

  11. Ehler, M., Fornasier, M., Sigl, J.: Quasi-linear compressed sensing. Multiscale Model. Simul. 12, 725–754 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gonzales, B., Spronk, D., Cheng, Y., Tucker, A.W., Beckman, M., Zhou, O., Lu, J.: Rectangular fixed-gantry CT prototype: combining CNT X-ray sources and accelerated compressed sensing-based reconstruction. IEEE Access 2, 971–981 (2014)

    Article  Google Scholar 

  13. Gu, R., Dogandžić, A.: Polychromatic X-ray CT image reconstruction and mass-attenuation spectrum estimation. arXiv preprint arXiv:1509.02193 (2015)

  14. Jørgensen, J.S., Sidky, E.Y.: How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 373, 20140387 (2015)

    Article  Google Scholar 

  15. Klodt, M., Hauser, R.: 3D image reconstruction from X-ray measurements with overlap. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 19–33. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_2

    Chapter  Google Scholar 

  16. Li, X., Voroninski, V.: Sparse signal recovery from quadratic measurements via convex programming. CoRR, abs/1209.4785 (2012)

    Google Scholar 

  17. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Sig. Process. Mag. 25, 72–82 (2007)

    Article  Google Scholar 

  18. Monajemi, H., Jafarpour, S., Gavish, M., Donoho, D.: Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices. Proc. Nat. Acad. Sci. 110, 1181–1186 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Commun. ACM 53, 93–100 (2010)

    Article  MATH  Google Scholar 

  20. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ohlsson, H., Yang, A., Dong, R., Sastry, S.: CPRL – an extension of compressive sensing to the phase retrieval problem. In: Advances in Neural Information Processing Systems, pp. 1367–1375 (2012)

    Google Scholar 

Download references

Acknowledgments

We thank Adaptix Ltd for providing the X-ray measurements used in the experiments with real-world data. This work was supported by Adaptix Ltd and EPSRC EP/K503769/1, as well as by The Alan Turing Institute under the EPSRC grant EP/N510129/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Hauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klodt, M., Hauser, R. (2018). Nonlinear Compressed Sensing for Multi-emitter X-Ray Imaging. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics