Advertisement

Location Uncertainty Principle: Toward the Definition of Parameter-Free Motion Estimators

  • Shengze Cai
  • Etienne Mémin
  • Pierre Dérian
  • Chao XuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10746)

Abstract

In this paper, we propose a novel optical flow approach for estimating two-dimensional velocity fields from an image sequence, which depicts the evolution of a passive scalar transported by a fluid flow. The Eulerian fluid flow velocity field is decomposed into two components: a large-scale motion field and a small-scale uncertainty component. We define the small-scale component as a random field. Then the data term of the optical flow formulation is based on a stochastic transport equation, derived from a location uncertainty principle [17]. In addition, a specific regularization term built from the assumption of constant kinetic energy involves the same diffusion tensor as the one appearing in the data transport term. This enables us to devise an optical flow method dedicated to fluid flows in which the regularization parameter has a clear physical interpretation and can be easily estimated. Experimental evaluations are presented on both synthetic and real images. Results indicate very good performance of the proposed parameter-free formulation for turbulent flow motion estimation.

References

  1. 1.
    Batchelor, G.: Small-scale variation of convected quantities like temperature in turbulent fluid. J. Fluid Mech. 5(01), 113–133 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Black, M., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)CrossRefGoogle Scholar
  3. 3.
    Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)CrossRefGoogle Scholar
  4. 4.
    Carlier, J.: Second set of fluid mechanics image sequences. European Project Fluid Image Analysis and Description (FLUID) (2005). http://www.fluid.irisa.fr
  5. 5.
    Cassisa, C., Simoens, S., Prinet, V., Shao, L.: Subgrid scale formulation of optical flow for the study of turbulent flow. Exp. Fluids 51(6), 1739–1754 (2011)CrossRefGoogle Scholar
  6. 6.
    Chen, X., Zillé, P., Shao, L., Corpetti, T.: Optical flow for incompressible turbulence motion estimation. Exp. Fluids 56(1), 1–14 (2015)CrossRefGoogle Scholar
  7. 7.
    Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 365–380 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Crisan, D., Flandoli, F., Holm, D.: Solution properties of a 3D stochastic Euler fluid equation. arXiv preprint arXiv:1704.06989 (2017)
  9. 9.
    Cuzol, A., Mémin, E.: A stochastic filtering technique for fluid flow velocity fields tracking. IEEE Trans. Pattern Anal. Mach. Intell. 31(7), 1278–1293 (2009)CrossRefGoogle Scholar
  10. 10.
    Dérian, P., Héas, P., Herzet, C., Mémin, E.: Wavelets and optical flow motion estimation. Numer. Math.: Theory Methods Appl. 6(1), 116–137 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Héas, P., Mémin, E., Heitz, D., Mininni, P.: Power laws and inverse motion modeling: application to turbulence measurements from satellite images. Tellus A: Dyn. Meteorol. Oceanogr. 64, 10962 (2012)CrossRefGoogle Scholar
  12. 12.
    Heitz, D., Mémin, E., Schnörr, C.: Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. Fluids 48(3), 369–393 (2010)CrossRefGoogle Scholar
  13. 13.
    Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)CrossRefGoogle Scholar
  14. 14.
    Jullien, M., Castiglione, P., Tabeling, P.: Experimental observation of Batchelor dispersion of passive tracers. Phys. Rev. Lett. 85(17), 3636 (2000)CrossRefGoogle Scholar
  15. 15.
    Kadri-Harouna, S., Dérian, P., Héas, P., Mémin, E.: Divergence-free wavelets and high order regularization. Int. J. Comput. Vis. 103(1), 80–99 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liu, T., Shen, L.: Fluid flow and optical flow. J. Fluid Mech. 614, 253–291 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mémin, E.: Fluid flow dynamics under location uncertainty. Geophys. Astrophys. Fluid Dyn. 108(2), 119–146 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mémin, E., Pérez, P.: Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans. Image Process. 7(5), 703–719 (1998)CrossRefGoogle Scholar
  19. 19.
    Papadakis, N., Mémin, E.: Variational assimilation of fluid motion from image sequence. SIAM J. Imag. Sci. 1(4), 343–363 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Resseguier, V., Mémin, E., Chapron, B.: Geophysical flows under location uncertainty, part I: random transport and general models. Geophys. Astrophys. Fluid Dyn. 111, 149–176 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sun, D., Roth, S., Black, M.: Secrets of optical flow estimation and their principles. In: Proceedings of the IEEE Conference on CVPR, pp. 2432–2439. IEEE (2010)Google Scholar
  22. 22.
    Yuan, J., Schnörr, C., Mémin, E.: Discrete orthogonal decomposition and variational fluid flow estimation. J. Math. Imag. Vis. 28(1), 67–80 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shengze Cai
    • 1
  • Etienne Mémin
    • 2
  • Pierre Dérian
    • 2
  • Chao Xu
    • 1
    Email author
  1. 1.State Key Laboratory of Industrial Control Technology and the Institute of Cyber-Systems and ControlZhejiang UniversityHangzhouChina
  2. 2.National Institute for Research in Computer Science and Control (Inria)Campus Universitaire de BeaulieuRennesFrance

Personalised recommendations