Skip to main content

Ising Models for Binary Clustering via Adiabatic Quantum Computing

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2017)

Abstract

Existing adiabatic quantum computers are tailored towards minimizing the energies of Ising models. The quest for implementations of pattern recognition or machine learning algorithms on such devices can thus be seen as the quest for Ising model (re-)formulations of their objective functions. In this paper, we present Ising models for the tasks of binary clustering of numerical and relational data and discuss how to set up corresponding quantum registers and Hamiltonian operators. In simulation experiments, we numerically solve the respective Schrödinger equations and observe our approaches to yield convincing results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Technology Quarterly: Quantum Devices. The Economist, March 2017

    Google Scholar 

  2. Castelvecchi, D.: Quantum computers ready to leap out of the lab in 2017. Nature 541(7635), 9–10 (2017). https://doi.org/10.1038/541009a

    Article  Google Scholar 

  3. Gibney, E.: D-Wave upgrade: how scientists are using the world’s most controversial quantum computer. Nature 541(7638), 447–448 (2017). https://doi.org/10.1038/541447b

    Article  Google Scholar 

  4. Grover, L.: From Schrödinger’s equation to the quantum search algorithm. J. of Phys. 56(2), 333–348 (2001). https://doi.org/10.1119/1.1359518

    Google Scholar 

  5. Aïmeur, E., Brassard, G., Gambs, S.: Quantum clustering algorithms. In: Proceedings ICML (2007)

    Google Scholar 

  6. Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013). https://doi.org/10.1007/s10994-012-531305

    Article  MathSciNet  MATH  Google Scholar 

  7. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. arXiv:1307.0411 [quant-ph] (2013)

  8. Wiebe, N., Kapoor, A., Svore, K.: Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. Quantum Inf. Comput. 15(3–4), 316–356 (2015)

    MathSciNet  Google Scholar 

  9. Albash, T., Lidar, D.: Adiabatic quantum computing. arXiv:1611.04471 [quant-ph] (2016)

  10. Bian, Z., Chudak, F., Macready, W., Rose, G.: The Ising model: teaching an old problem new tricks. Technical report, D-Wave Systems (2010)

    Google Scholar 

  11. Johnson, M., Amin, M., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A., Johansson, J., Bunyk, P., Chapple, E., Enderud, C., Hilton, J., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M., Tolkacheva, E., Truncik, C., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). https://doi.org/10.1038/nature10012

    Article  Google Scholar 

  12. Born, M., Fock, V.: Beweis des Adiabatensatzes. Zeitschrift für Physik 51(3–4), 165–180 (1928). https://doi.org/10.1007/BF01343193

    Article  Google Scholar 

  13. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489

    Article  MathSciNet  MATH  Google Scholar 

  14. Hartigan, J., Wong, M.: Algorithm AS 136: a \(k\)-means clustering algorithm. J. Roy. Stat. Soc. C 28(1), 100–108 (1979). https://doi.org/10.2307/2346830

    MATH  Google Scholar 

  15. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings Berkeley Symposium on Mathematical Statistics and Probability (1967)

    Google Scholar 

  16. Aloise, D., Deshapande, A., Hansen, P., Popat, P.: NP-hardness of euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009). https://doi.org/10.1007/s10994-009-5103-0

    Article  MATH  Google Scholar 

  17. Fisher, R.: On the probable error of a coefficient correlation deduced from a small sample. Metron 1, 3–32 (1921)

    MathSciNet  Google Scholar 

  18. MacKay, D.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  19. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. PAMI 22(8), 888–905 (2000). https://doi.org/10.1109/34.868688

    Article  Google Scholar 

  20. Dhillon, I.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings KDD (2001)

    Google Scholar 

  21. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

  22. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J. 25(4), 619–633 (1975)

    MathSciNet  MATH  Google Scholar 

  23. Johansson, J., Nation, P., Nori, F.: QuTiP 2: a python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013). https://doi.org/10.1016/j.cpc.2012.11.019

    Article  Google Scholar 

  24. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. arXiv:1611.09347 [quant-ph] (2016)

  25. Dunjiko, V., Taylor, J., Briegel, H.: Quantum-enhanced machine learning. Phys. Rev. Lett. 117(13), 130501 (2016). https://doi.org/10.1103/PhysRevLett.117.130501

    Article  MathSciNet  Google Scholar 

  26. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2014). https://doi.org/10.1080/00107514.2014.964942

    Article  MATH  Google Scholar 

  27. Wiebe, N., Kapoor, A., Svore, K.: Quantum perceptron models. In: Proceedings NIPS (2016)

    Google Scholar 

  28. Wittek, P.: Quantum Machine Learning. Academic Press, London (2014)

    MATH  Google Scholar 

  29. Ushijima-Mwesigwa, H., Negre, C., Mniszewski, S.: Graph partitioning using quantum annealing on the D-Wave system. arXiv:1705.03082 [quant-ph] (2017)

  30. Newman, M.: Modularity and community structure in networks. PNAS 103(23), 8577–8582 (2006). https://doi.org/10.1073/pnas.0601602103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bauckhage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bauckhage, C., Brito, E., Cvejoski, K., Ojeda, C., Sifa, R., Wrobel, S. (2018). Ising Models for Binary Clustering via Adiabatic Quantum Computing. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics