Skip to main content

The Heated Bénard–Kármán Street: A Review of the Effective Reynolds Number Concept

  • Chapter
  • First Online:
Nonlinear Waves and Pattern Dynamics

Abstract

This chapter focuses on the wake flow behind a heated circular cylinder in the laminar vortex shedding regime where the Bénard–Kármán street appears. This flow is of fundamental importance both from the viewpoint of the hydrodynamic stability theory and engineering applications. Even in absence of buoyancy forces, this wake flow is more complicated than in the isothermal case due to temperature differences generated within the fluid leading to variations of its physical properties. In this situation, experiments showed that heat is never a passive contaminant. Due to the respective thermal dependence of the kinematic viscosity, heating the cylinder stabilizes the flow in air while it destabilizes the flow in water. This phenomenon led to the definition of an effective Reynolds number that is associated to an effective temperature. Value of the effective temperature is shown to depend on the nature of the fluid. In air, global and local flow similarities between wake flows of the same “effective” Reynolds numbers are pointed out, underlying the physical significance of this concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bénard, H.: Formation de centres de giration à l'arrière d'un obstacle en mouvement. C. R. Acad. Sci. Paris, 147, 839–842 (1908)

    Google Scholar 

  2. Kármán, Th. von: Uber den Mechanismus der Widerstander den ein bewegter Korper in einer Flüsseigkeit afahrt. Gott. Nadir, 509–517 (1911)

    Google Scholar 

  3. Provansal, M., Mathis, C., Boyer, L.: Bénard-von Karman Instability: Transient and forced regimes. J. Fluid Mech., 182, 1–22 (1987)

    Google Scholar 

  4. Schumm, M., Berger, E., Monkewitz, P.A.: Self-excited oscillations in the wake of two-dimensional bluff bodies and their control. J. Fluid Mech., 271, 17–53 (1994)

    Google Scholar 

  5. Zdravkovich, M.M.: Flow around Circular Cylinders, Volume 2: Applications. Oxford University Press (2003)

    Google Scholar 

  6. Zdravkovich, M.M.: Flow around Circular Cylinders, Volume 1: Fundamentals. Oxford Science Publications, New York, USA (1997)

    Google Scholar 

  7. Berger, E., Wille, R.: Periodic Flow Phenomena. Annual Review of Fluid Mechanics, 4, 313–340 (1972)

    Google Scholar 

  8. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Ann. Rev. Fluid. Mech. 28, 477 (1996)

    Google Scholar 

  9. Hammache, M., Gharib, M.: An experimental study of the parallel and oblique vortex shedding from circular cylinders, J. Fluid Mech., 232, 567–590 (1991)

    Google Scholar 

  10. Badr, H.M.: Laminar combined convection from a horizontal cylinder-parallel and contra flow regimes. Int. J. Heat Mass Transfer, 27, 15–27 (1984)

    Google Scholar 

  11. Michaux-Leblond, N., Belorgey, M.: Near wake behaviour of a heated circular cylinder: viscosity–buoyancy duality. Exp. Therm. Fluid Sci. 15, 91–100 (1997)

    Google Scholar 

  12. Hu, H., Koochesfahani, M.: Thermal effects on the wake of a heated circular cylinder operating in mixed convection regime. J. Fluid Mech., 685, 235–270 (2011)

    Google Scholar 

  13. Singh, S.K., Panigrahi, P.K., Muralidhar, K.: Effect of buoyancy on the wakes of circular and square cylinders: a schlieren-interferometric study. Exp. Fluids, 43, 101–123 (2007)

    Google Scholar 

  14. Kieft, R.N., Rindt, C.C.M., Steenhoven, A.A. van: The wake behaviour behind a heated horizontal cylinder. Exp. Thermal Fluid Sci., 19, 183–193 (1999)

    Google Scholar 

  15. Kieft, R.N., Rindt, C.C.M., Steenhoven, A.A. van: Heat induced transition of a stable vortex street. Int. J. Heat Mass Transfer, 45, 2739–2753 (2002)

    Google Scholar 

  16. Kieft, R.N., Rindt, C.C.M., Steenhoven, A.A. van: Near-wake effects of a heat input on the vortex-shedding mechanism. Int. J. Heat Fluid Flow, 28, 938–947 (2007)

    Google Scholar 

  17. Steenhoven, A.A. van, Rindt, C.C.M.: Flow transition behind a heated cylinder. Int. J. Heat Fluid Flow, 24, 322–33 (2003)

    Google Scholar 

  18. King, L.V.: On the Convection of Heat from Small Cylinders in a Stream of Fluid: Determination of the Convection Constants of Small Platinum Wires with Applications to Hot-Wire Anemometry. Proc. Roy. Soc. London, 90, 563–570 (1914)

    Google Scholar 

  19. Mc Adams, W. : Heat transmission, Mc-Graw-Hill, NewYork (1954)

    Google Scholar 

  20. Hilpert, R.: Wärmeabgage von geheitzen Drähten und Rohren im Lufstrom. Forsch. Gebiete Ingenieurw, 4, 305–314 (1933

    Google Scholar 

  21. Churchill, S.W., Brier, J.C.: Convective heat transfer from a gas stream at high temperature to a circular cylinder normal to the flow. Chem. Eng. Progr. Symp. Series, 51, 57 (1955)

    Google Scholar 

  22. Kramers, H.: Heat transfer from spheres to flowing media. Physica, 12, 61–80 (1946)

    Google Scholar 

  23. Van Der Hegge Zijnen, B.G.: Heat transfer from horizontal cylinders to a turbulent air flow. Applied Scientific Research, Section A, 7, 2, 205–223 (1958)

    Google Scholar 

  24. Collis, D.C., Williams, M.J.: Two-dimensional convection from heated wires at low Reynolds numbers. J. Fluid Mech., 6, 3, 357–384 (1959)

    Google Scholar 

  25. Eckert, E.R.G., Soenghen, E.: Distribution of heat transfer coefficients around circular cylinder in cross flow at Reynolds numbers from 20 to 500. Trans. ASME J. Heat Transfer, 74, 343–347 (1952)

    Google Scholar 

  26. Ezersky, A.B.: Detached flow around a heated cylinder at small Mach number. Prikladnaya Mekhanika i Tekhn. Fizika, 5, 56 (1990)

    Google Scholar 

  27. Hamma, L.: Etude de la diffusion de la chaleur en aval d’un cylindre chauffé à faible nombre de Reynolds (40< Re< 160). Thèse Sc.Phys. Université de Rouen (1988)

    Google Scholar 

  28. Fey, U., König, M., Eckelmann, H.: A new Strouhal-Reynolds number relationship for the circular cylinder in the range 47< Re <2. 105. Phys. Fluids, 10, 1547–1549 (1998)

    Google Scholar 

  29. Godard, G., Weiss, F., Gonzalez, M., Paranthoën, P.: Heat transfer from a line source in the periodic laminar near wake of a circular cylinder. Experimental Thermal and Fluid Science, 29, 547–558 (2005)

    Google Scholar 

  30. Kovasznay, L.S.G.: Hot -wire investigation of the wake behind cylinders at low Reynolds numbers. Proc. Roy. Soc. A, 198, 174–190 (1949)

    Google Scholar 

  31. Lange, C.F., Durst, F., Breuer, M.: Momentum and heat transfer from cylinders in laminar crossflow at 10-4 < Re < 200. Int. J. Heat Mass Transfer, 41, 22, 3409–3430 (1998)

    Google Scholar 

  32. Le Masson, S.: Contrôle de l’instabilité de Bénard-Kármán en aval d’un obstacle chauffé à faible nombre de Reynolds. Thèse Sc. Phys., Université de Rouen (19Mc Adams, W.: Heat transmission, Mc-Graw-Hill, NewYork (1954)

    Google Scholar 

  33. Wang, A.B., Trávníček, Z., Chia, K.C.: On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder. Phys. Fluids 12, 6, 1401–1410 (2000)

    Google Scholar 

  34. Roshko, A.: On the drag and shedding frequency of two-dimensional bluff bodies. NACA Technical Note 3169 (1954)

    Google Scholar 

  35. Williamson, C.H.K., Brown, G.L.: A series in 1/√Re to represent the Strouhal–Reynolds number relationship of the cylinder wake. J. Fluids Struct. 12, 1073–1085 (1998)

    Google Scholar 

  36. Kücheman, D.: Report on the I.U.T.A.M. symposium on concentrated vortex motions. J. Fluid Mech. 21, 1, 1–20 (1965)

    Google Scholar 

  37. Crum, G.F., Hanratty, T.J.: Dissipation of a Sheet of Heated Air in a Turbulent Flow. Applied Scientific Research, A15, 177–195 (1966)

    Google Scholar 

  38. Uberoi, M., Corrsin, S.: Diffusion of heat in isotropic turbulence. NACA Report 1142 (1953)

    Google Scholar 

  39. Shlien, D.J., Corrsin, S.: Dispersion measurements in a turbulent boundary layer. Int. J. Heat Mass Transfer, 19, 285–295 (1976)

    Google Scholar 

  40. Stapountzis, H., Sawford, B.L., Hunt, J.C.R., Britter, R.E.: Structure of the temperature field downwind of a line source in grid turbulence. J. Fluid Mech., 165, 401–424 (1986)

    Google Scholar 

  41. Paranthoën, P., Fouari, A., Dupont, A., Lecordier, J-C.: Dispersion measurements in turbulent flows (boundary layer and plane jet). Int. J. Heat Mass Transfer 31, 1, 153–165 (1988)

    Google Scholar 

  42. Lecordier, J-C., Hamma, L., Paranthoën, P.: The control of vortex shedding behind heated cylinder at low Reynolds numbers. Exp. Fluids, 10, 224–229 (1991)

    Google Scholar 

  43. Lecordier, J-C., Hamma, L., Paranthoën, P.: The control of vortex shedding behind heated cylinder at low Reynolds numbers. Internal Report UA CNRS 230, Thermodynamics Laboratory, University of Rouen (1988)

    Google Scholar 

  44. Lecordier, J-C., Browne, L.W.B., Le Masson, S., Dumouchel, F., Paranthoën, P.: Control of vortex shedding by thermal effect at low Reynolds numbers. Experimental Thermal and Fluid Science, 21, 4, 227–237 (2000)

    Google Scholar 

  45. Yu, M.H., Monkewitz, P.A.: The Effect of Nonuniform Density on the Absolute Instability of Two-dimensional Intertial Jets and Wakes. Phys. Fluids A, 2, 1175–1181 (1990)

    Google Scholar 

  46. Socolescu, L., Mutabazi, I., Daube, O., Huberson, S.: Etude de l’instabilité du sillage bidimensionnel derrière un cylindre faiblement chauffé. C. R. Acad. Sci., Série IIb, 322, 203–208 (1996)

    Google Scholar 

  47. Yahagi, Y.: Structure of two dimensional vortex behind a highly heated cylinder. Trans. Japan Society of Mech. Engineers, Part B, 64, 622, 1825–1831 (1998)

    Google Scholar 

  48. Fedorchenko, A.I., Travníček, Z., Wang, A.B.: On the effective concept in the problem of laminar vortex shedding behind a heated cylinder. Phys. Fluids, 19, 5, 051701-1-051701-3 (2007)

    Google Scholar 

  49. Fedorchenko, A.I., Marsik, F., Travníček, Z.: On the effective temperature concept for liquid: Paradox of the similarity? Int. Comm. Heat Mass Transfer, 38, 852–854 (2011)

    Google Scholar 

  50. Wu, M.H., Wang, A.B.: On the transitional wake behind a heated circular cylinder. Phys. Fluids 19, 084102 (2007)

    Google Scholar 

  51. Wang, A.B., Trávníček, Z.: On the linear heat transfer correlation of a heated circular cylinder in laminar crossflow using a new representative temperature concept. Int. J. Heat Mass Transfer, 44, 4635–4647 (2001)

    Google Scholar 

  52. Travníček, Z., Wang, A.-B., Tu, W.Y.: Laminar vortex shedding behind a cooled circular cylinder. Exp. Fluids, 55, 1679 (2014)

    Google Scholar 

  53. Sabanca, M., Durst, F.: Flows past a tiny circular cylinder at high temperature ratios and slight compressible effects on vortex shedding. Phys. Fluids 15, 7, 1821–1829 (2003)

    Google Scholar 

  54. Shi, J.-M., Gerlach, D., Breuer, M., Biswas, G., Durst, F.: Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder. Phys. Fluids, 16, 4331 (2004)

    Google Scholar 

  55. Baranyi, L., Szabó, S., Bolló, B.: Analysis of low Reynolds number flow around a heated circular cylinder. J. Mech. Sci. Technol., 23, 1829 (2009)

    Google Scholar 

  56. Vit, T., Ren, M., Trávníček, Z., Marsik, F., Rindt, C.C.M.: The influence of temperature gradient on the Strouhal-Reynolds number relationship for water and air. Exp. Thermal Fluid Sci., 31, 751–760 (2007)

    Google Scholar 

  57. Pech, J.: On computations of temperature dependent incompressible flows by high order methods. EPJ Web of Conferences 114, 02089 (2016)

    Google Scholar 

  58. Gebhart, B.: Heat conduction and mass diffusion. Mc Graw-Hill Inc., New York (1993)

    Google Scholar 

  59. Dumouchel, F., Paranthoën, P., Lecordier, J-C.: The effective Reynolds number of a heated cylinder. 2nd European Thermal Sciences Symposium, Rome, Italy (1996)

    Google Scholar 

  60. Dumouchel, F., Lecordier, J-C., Paranthoën, P.: The effective Reynolds number of a heated cylinder. Int. J. Heat Mass Transfer, 41, 12, 1787–1794 (1998)

    Google Scholar 

  61. Trávníček, Z., Wang, A.B.: On the effective temperature and Reynolds number concept for a heated circular cylinder: commentary of the article by Baranyi et al. (2009). Journal of Mechanical Science and Technology, 25, 8, 1881–1884 (2011)

    Google Scholar 

  62. Lecordier, J-C., Dumouchel, F., Paranthoën, P.: Heat transfer in a Bénard-Karman vortex street in air and in water. Int. J. Heat Mass Transfer, 42, 16, 3131–3136 (1999)

    Google Scholar 

  63. Isaev, S.A., Baranov, P.A., Zhukova, Y.V., Sudakov, A.G.: Enhancement of heat transfer in unsteady laminar oil flow past a heated cylinder at Re = 150. Thermophysics and Aerodynamics, 21, 5, 531–543 (2014)

    Google Scholar 

  64. Xin, X.F., Chen, C., Wang, B.F., Ma, D.J., Sun, D.J.: Local Heating Effect of Flow Past a Circular Cylinder. Chin. Phys. Lett. 27, 4, 044701–1- 044701-4 (2010)

    Google Scholar 

  65. Strykowski, P.J., Sreenivasan, K.R.: On the suppression of vortex shedding at low Reynolds numbers. J. Fluid Mech., 218, 71–107 (1990)

    Google Scholar 

  66. Paranthoën, P., Lecordier, J-C.: Control of the wake instability at low Reynolds numbers by thermal effect. Bluff-Body Wakes, Dynamics and Instabilities IUTAM Symposium, Göttingen, Germany, September 7–11 (1992)

    Google Scholar 

  67. Wu, M.H., Trávníček, Z., Wang, A.B.: The onset of oblique vortex shedding behind a heated circular cylinder in laminar wake regime,. Phys. Fluids, 24, 011701 (2012)

    Google Scholar 

  68. Abernathy, F.H., Kronauer, R.E.: The formation of vortex street. J. Fluid Mech., 13, 1–20 (1962)

    Google Scholar 

  69. Gerrard, J.H.: The mechanism of the formation region of vortices behind bluff bodies. J. Fluid Mech., 25, 401–413 (1966)

    Google Scholar 

  70. Paranthoën, P., Browne, L.W.B., Masson, S. L., Dumouchel, F., Lecordier, J-C.: Characteristics of the near wake of a cylinder at low Reynolds numbers, European J. Mech. B, 18, 4, 659–674 (1999)

    Google Scholar 

  71. Dumouchel, F. : Etude expérimentale des champs dynamiques et thermiques de l’écoulement de Bénard-Karman en aval d’un obstacle chauffé dans l’air et dans l’eau. Thèse Sc.Phys. Université de Rouen (1997)

    Google Scholar 

  72. Douglas, W.J.M., Churchill, S.W.: Recorrelation of Data for Convective Heat Transfer between Gases and single Cylinders with Large Temperature Differences. Chem. Engng. Prog. Symp. Series 52, 23–28 (1956)

    Google Scholar 

  73. Ezersky, A.B., Gharib, M., Hammache, M.: Spatio temporal structures of wake behind a heated cylinder. Prikladnaya Mekhanika i Tekhn. Fizika, 5, 74 (1994)

    Google Scholar 

  74. Ezersky, A.B., Paranthoën, P.: The Transition in a Wake Caused by Heating of a Streamlined Cylinder. Int. J. Trans. Phenomena, 7, 45–53 (2005)

    Google Scholar 

  75. Dumouchel, F., Paranthoën, P.: Etude expérimentale de la transition 2D-3D dans le sillage laminaire périodique d’un cylindre chauffé. Congrès Français de Thermique, SFT 2007, Ile des Embiez (2007)

    Google Scholar 

  76. Ezersky, A.B., Cherov, V., Gromov, P., Nazarovsky, A., Soustov, P., Paranthoën, P.:, Remote acoustic diagnostics of defects arising in a Kármán vortex street behind a heated cylinder. Fluid Dyn. Res., 43, 1 (2010)

    Google Scholar 

  77. Zhang, H.Q., Fey, U., Noack, B.R., König, M., Eckelmann, H.: On the transition of the cylinder wake. Phys. Fluids, 7, 4, 779–794 (1995)

    Google Scholar 

  78. Ezersky, A.B., Ermoshin, D.A.: The instability of density stratified vortices. Eur. J. Mech. B/Fluids, 14, 617 (1995)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank past collaborators on the subject of this chapter including Laurence Hamma, Stéphane LeMasson, Fabien Dumouchel, Franck Weiss and Gilles Godard. The authors gratefully acknowledge the assistance of the technical staff of CNRS UMR 6614. During these researches, owing to the support of CNRS, we have also had the privilege to work with Alexander Ezersky. We remember Alexander as a brilliant scientist both renowned theorist, skilled experimenter and a great man.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Paranthoën .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paranthoën, P., Lecordier, JC. (2018). The Heated Bénard–Kármán Street: A Review of the Effective Reynolds Number Concept. In: Abcha, N., Pelinovsky, E., Mutabazi, I. (eds) Nonlinear Waves and Pattern Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-78193-8_12

Download citation

Publish with us

Policies and ethics