Skip to main content

Radial Propagation of the Instability Modes Observed in a Viscoelastic Couette–Taylor Flow

  • Chapter
  • First Online:

Abstract

Experimental investigation of the flow of a high-molecular-mass polymer solution in the Couette–Taylor system with fixed outer cylinder was performed using visualization and particle image velocimetry (PIV) techniques. Spatiotemporal diagrams of the reflected light intensity and of velocity data allow to describe the flow dynamics in the meridional cross section. When the elasticity and inertia effects are comparable (inertioelastic regime), the circular Couette flow bifurcates to standing waves—in the axial direction—called ribbons. These critical waves also propagate in the radial direction toward the outer cylinder. The higher instability mode manifests in form of domains with disordered oscillations separated by fluctuating walls characterized by strong radial inflow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Gyr & H-W. Bewersdorff, Drag reduction of Turbulent flows by Additives, Vol. 32 Fluid Mechanics and its Applications (Kluwer Academic, New York, 1995).

    Google Scholar 

  2. R.B. Bird, R.C. Armstrong & O. Hassaguer, Dynamics of Polymer Liquids, Vol 1 & 2, (Wiley, New York, 1987).

    Google Scholar 

  3. B. A. Toms, Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. Proceedings of the 1st International Congress on Rheology, Vol. 2, pp. 135–141. (North-Holland 1948).

    Google Scholar 

  4. R.F. Ginn & M.M. Denn, Rotational stability in viscoelastic liquids: Theory, AIChE J. 15, 450 (1969).

    Google Scholar 

  5. M.M. Denn & J.J. Roisman, Rotational stability and measurement of normal stress functions in dilute polymer solutions, AIChE J. 15, 454 (1969).

    Google Scholar 

  6. G.S. Beavers & D.D. Joseph, Tall Taylor cells in polyacrylamide solutions, Phys. Fluids 17, 650 (1974).

    Google Scholar 

  7. R.G. Larson, E.S. G. Shaqfeh & S.J. Muller, A purely elastic instability in Taylor-Couette flow, J. Fluid Mech. 218, 573 (1990).

    Google Scholar 

  8. R.G. Larson, Instabilities in viscoelastic flows, Rheol. Acta 31, 213 (1992).

    Google Scholar 

  9. Y. Bai, “Study of the viscoelastic instability in Taylor-Couette system as an analog of the magnetorotational instability”, Ph.D. thesis, Université du Havre (2015).

    Google Scholar 

  10. C.D. Andereck, S.S. Liu & H.L. Swinney, Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155 (1986). See also R. Tagg, The Couette–Taylor problem, Nonlinear Sci. Today 4, 1 (1994).

    Google Scholar 

  11. A. Groisman & V. Steinberg, Elastic turbulence in a polymer solution flow, Nature, 405, 53–55 (2000).

    Google Scholar 

  12. A. Groisman & V. Steinberg, Mechanism of elastic instability in Couette flow of polymer solutions: experiment, Phys. Fluids 10 (10), 2451–2463 (1998).

    Google Scholar 

  13. A. Groisman & V. Steinberg, Couette-Taylor flow in a dilute polymer solution, Phys. Rev. Lett. 77 (8), 1480–1483 (1996).

    Google Scholar 

  14. B. M. Baumert & S. J. Muller, Axisymmetric and non-axisymetric elastic and inertio-elastic instabilities in Taylor-Couette flow, J. Non-Newt. Fluid Mech. 83, 33–69 (1999).

    Google Scholar 

  15. O. Crumeyrolle, I. Mutabazi & M. Grisel, Experimental study of inertioelastic Couette-Taylor instability modes in dilute and semidilute polymer solutions, Phys. Fluids 14 (5), 1681–1688 (2002).

    Google Scholar 

  16. N. Latrache, N. Abcha, O. Crumeyrolle, I. Mutabazi, Defect-mediated turbulence in ribbons of viscoelastic Taylor-Couette flow, Phys. Rev. E 93, 043126 (2016).

    Google Scholar 

  17. O. Crumeyrolle, N. Latrache, I. Mutabazi, A.B. Ezersky, Instabilities with shear-thinning polymer solutions in the Couette-Taylor system, J.Phys. Conf. Ser. 14, 78 (2005).

    Google Scholar 

  18. N. Latrache, O. Crumeyrolle, N. Abcha, and I. Mutabazi, Destabilization of inertio-elastic mode via spatiotemporal intermittency in a Couette-Taylor viscoelastic flow, J. Phys. Conf. Ser. 137, 012022 (2008).

    Google Scholar 

  19. N. Latrache, O. Crumeyrolle, I. Mutabazi, Transition to turbulence in a flow of a shear-thinning viscoelastic solution in a Taylor-Couette cell, Phys. Rev. E 86, 056305 (2012).

    Google Scholar 

  20. P. Matisse, M. Gorman, Neutrally buoyant anisotropic particles for flow visualization, Phys. Fluids 27, 759 (1984).

    Google Scholar 

  21. M. A. Dominguez-Lerma, G. Ahlers, D.S. Cannell, Effects of Kalliroscope flow visualization particles on rotating Couette–Taylor flow, Phys. Fluids 28, 1204 (1985).

    Google Scholar 

  22. S.T. Wereley, R.M. Lueptow, Spatio-temporal character of nonwavy and wavy Taylor–Couette flow, J. Fluid Mech. 364, 59 (1998).

    Google Scholar 

  23. P. Chossat & G. Iooss, The Couette-Taylor problem, Springer-Verlag, New York (1994).

    Google Scholar 

  24. N. Abcha, N. Latrache, F. Dumouchel, I. Mutabazi, Qualitative relation between reflected light intensity by Kalliroscope flakes and velocity field in the Couette-Taylor flow system Exp. Fluids 45, 85 (2008).

    Google Scholar 

  25. I. Mutabazi, N. Abcha, O. Crumeyrolle, and A. Ezersky, Application of the particle image velocimetry to the Couette-Taylor flow, in The PIV Characteristics, Limits and Possible Applications, edited by G. Cavazzini (InTech, Rijeka, 2012), Chap. 7, pp. 177–202.

    Google Scholar 

  26. P. Bot, I. Mutabazi, Dynamics of spatio-temporal defects in the Taylor-Dean system, Eur. Phys. J. B 13, 141 (2000).

    Google Scholar 

  27. P. Bot, O. Cadot, I. Mutabazi, Secondary instability mode of a roll pattern and transition to spatiotemporal chaos in the Taylor-Dean system, Phys. Rev. E 58, 3089 (1998).

    Google Scholar 

Download references

Acknowledgements

During this work, we have benefited from the theoretical enlightening discussions with A. B. Ezersky who has introduced the modeling of the harmonic interaction within the coupled complex Ginzburg-Landau equation. The present work was partially supported by the Normandie Regional Council under the projects THETE and BIOENGINE (CPER-FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar Abcha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abcha, N., Kelai, F., Latrache, N., Crumeyrolle, O., Mutabazi, I. (2018). Radial Propagation of the Instability Modes Observed in a Viscoelastic Couette–Taylor Flow. In: Abcha, N., Pelinovsky, E., Mutabazi, I. (eds) Nonlinear Waves and Pattern Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-78193-8_11

Download citation

Publish with us

Policies and ethics