Skip to main content

Performance of Steel Fiber-Reinforced High-Performance One-Part Geopolymer Concrete

  • Conference paper
  • First Online:
International Congress on Polymers in Concrete (ICPIC 2018) (ICPIC 2018)

Included in the following conference series:

Abstract

The high CO2 emissions of ordinary Portland cement (OPC) production have led to increasing the efforts on developing eco-efficient alternative binders. Geopolymers are inorganic binders proposed as an alternative to OPC, which are mainly based on aluminosilicate by-products and alkali activators. Higher utilization of industrial waste materials, such as ceramic manufacturing waste, could be enabled by geopolymers. In ceramic industry, around 30% of raw materials end up in waste streams, and therefore, an attempt is made to recycle these materials. The ceramic wastes are rich in silicate and aluminate and have therefore high potential to be used in the geopolymeric concrete. In the present paper, the porcelain ceramic waste was used as 10% of total binder weight in substituting ground-granulated blast-furnace slag (GGBFS). The results showed that the resulting binders have comparatively high compressive strength (≥60 MPa) and show brittle behavior, which is typical to inorganic binders with no fiber reinforcement. Microsteel fibers were used to improve the flexural performance of these binders at three different fibers by mass of binder (0.5%, 1%, and 1.5%). After curing, mechanical performances were investigated by measuring the compressive and flexural strength. The results showed that the addition of steel fibers significantly improved the flexural behavior. In addition, it was revealed that these fiber-reinforced binders had a deflection hardening behavior due to the bridging action of steel fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, M. B., Saidur, R., & Hossain, M. S. (2011). A review on emission analysis in cement industries. International Journal of Renewable and Sustainable Energy Reviews, 15, 2252–2261.

    Article  Google Scholar 

  2. Barcelo, M., Kline, J., Walenta, G., & Gartner, E. (2014). Cement and carbon emissions. International Journal of Material and Structure, 47, 1055–1065.

    Article  Google Scholar 

  3. Flatt, R. J., Roussel, N., & Cheeseman, C. R. (2012). Concrete: An eco-material that needs to be improved. International Journal of European Ceramic Society, 32, 2787–2798.

    Article  Google Scholar 

  4. Gartner, E., & Hirao, H. (2015). A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. International Journal of Cement and Concrete Research, 78, 126–142.

    Article  Google Scholar 

  5. Provis, J. L. (2014). Introduction and scope. In J. L. Provis & J. S. J. Van Deventer (Eds.), Alkali activated materials, state-of-the-art report, RILEM TC 224-AAM (pp. 1–9). Dordrecht: Springer.

    Chapter  Google Scholar 

  6. Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). One-part alkali-activated materials: A review. Journal of Cement and Concrete Research, 103, 21–34.

    Google Scholar 

  7. Havlikova, I., Merta, I., Schneemayer, A., Vesely, V., Simonova, H., Korycanska, B., & Kersner, Z. (2015). Effect of fiber type in concrete on crack initiation. Applied Mechanics and Materials, 769, 308–311.

    Google Scholar 

  8. Mastali, M., & Dalvand, A. (2016). Use of silica fume and recycled steel fibres in self-compacting concrete (SCC). Construction and Building Materials, 125, 196–209.

    Article  Google Scholar 

  9. ASTM C78. (2016). Standard test method for flexural strength of concrete (using simple beam with third-point loading). West Conshohocken: ASTM International.

    Google Scholar 

  10. ASTM C349-14. (2014). Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure). West Conshohocken: ASTM International.

    Google Scholar 

  11. Abdollahnejad, Z., Mastali, M., Mastali, M., & Dalvand, A. (2017). A comparative study on the effects of recycled glass fiber on drying shrinkage rate and mechanical properties of the self-compacting concrete and fly ash/slag geopolymer concrete. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001918.

  12. Mastali, M., Dalvand, A., Sattarifard, A., & Abdollahnejad, Z. (2018). Effects of using recycled glass fibers with different lengths and dosages on fresh and hardened properties of self-compacting concrete (SCC). Magazine of Concrete Research, https://doi.org/10.1680/jmacr.17.00180

  13. Askari, M. A., Mastali, M., Dalvand, A., & Abdollahnejad, Z. (2017). Development of deflection hardening cementitious composites using glass fibres for flexural repairing/strengthening concrete beams: Experimental and numerical studies. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2017.1327888.

Download references

Acknowledgments

This work was supported by the Finnish Funding Agency for Technology and Innovation (Tekes) [grant number 1105/31/2016] (project GEOBIZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Abdollahnejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdollahnejad, Z., Luukkonen, T., Kinnunen, P., Illikainen, M. (2018). Performance of Steel Fiber-Reinforced High-Performance One-Part Geopolymer Concrete. In: Taha, M. (eds) International Congress on Polymers in Concrete (ICPIC 2018). ICPIC 2018. Springer, Cham. https://doi.org/10.1007/978-3-319-78175-4_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78175-4_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78174-7

  • Online ISBN: 978-3-319-78175-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics