Visualization of Latent Factor Structure

  • Cody S. Ding


Illustrate how complex data structure can be visualized in a two-dimensional space using simulated data. Spatial point analysis is discussed in the context of MDS. Test of spatial randomness and clustering effect of data points is explained. Examples from real data are provided to demonstrate the points discussed.


Latent factor map Spatial randomness Clustering effect The Silhouette Width index The Dunn Index 


  1. Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks: Sage.Google Scholar
  2. Barraca, J., Pérez-Álvarez, M., & Bleda, J. H. L. (2011). Avoidance and activation as keys to depression: Adaptation of the behavioral activation for depression scale in a Spanish sample. The Spanish Journal of Psychology, 14(2), 998–1009.CrossRefGoogle Scholar
  3. Bentler, P. M. (1990). Comparative fit indices in structural models. Psychological Bulletin, 107, 238–246.CrossRefGoogle Scholar
  4. Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2013). Applied spatial analysis with R (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  5. Brock, G., Pihur, V., Datta, S., & Datta, S. (2008). clValid: An R package for cluster validation. Journal of Statistical Software, 25(4), 1–22.CrossRefGoogle Scholar
  6. Bühler, J., Keller, F., & Läge, D. (2014). Activation as an overlooked factor in the BDI–II: A factor model based on core symptoms and qualitative aspects of depression. Psychological Assessment, Advance Online Publication, 26(3), 970. Scholar
  7. Butner, J. E., Gagnon, K. T., Geuss, M. N., Lessard, D. A., & Story, T. N. (2014). Utilizing topology to generate and test theories of change. Psychological Methods, 20(1), 1–25. Online First. doi: Scholar
  8. Byrne, B. M. (1994). Structural equation modeling with EQS and EQS/Windows. Thousand Oaks: Sage Publications.Google Scholar
  9. Cohen, A. (2008). The underlying structure of the Beck Depression Inventory II: A multidimensional scaling approach. Journal of Research in Personality, 42, 779–786. Scholar
  10. Coxon, A. P. M. (1982). The user’s guide to multidimensional scaling. London: Heinemann Educational Books.Google Scholar
  11. Data Theory Scaling System Group. (n.d.). PROXSCAL (Version 1.0). Leiden university, Netherlands: Faculty of Social and Behavioral Sciences.Google Scholar
  12. Davies, P. M., & Coxon, A. P. M. (Eds.). (1982). Key texts in multidimensional scaling. London: Heinemann Educational Books.Google Scholar
  13. Davison, M. L. (1985). Multidimensional scaling versus components analysis of test intercorrelations. Psychological Bulletin, 97(1), 94–105.CrossRefGoogle Scholar
  14. Davison, M. L., & Skay, C. L. (1991). Multidimensional scaling and factor models of test and item responses. Psychological Bulletin, 110, 551–556.CrossRefGoogle Scholar
  15. DeSarbo, W. S., Howard, D., & Jedidi, K. (1991). Multiclus: A new method for simultaneously performing multidimensional scaling and cluster analysis. Psychometrika, 56, 121–136.CrossRefGoogle Scholar
  16. Diggle, P. J. (2003). Statistical analysis of spatial point patterns. London: Arnold.zbMATHGoogle Scholar
  17. Dimidjian, S., Barrera, M. R., Martell, C., Munoz, R. F., & Lewinsohn, P. M. (2011). The origins and current status of behavioral activation treatments for depression. Annual Review of Clinical Psychology, 7, 1–38.CrossRefGoogle Scholar
  18. Dopazo, J., & Carazo, J. M. (1997). Phylogenetic reconstruction using a growing neural network that adopts the topology of a phylogenetic tree. Journal of Molecular Evolution Psychiatrique, 44(2), 226–233.CrossRefGoogle Scholar
  19. Dunn, J. C. (1974). Well separated clusters and fuzzy partitions. Journal on Cybernetics, 4, 95–104.MathSciNetCrossRefGoogle Scholar
  20. Fraley, R. C., & Raftery, A. (2007). Model-based methods of classification: Using the mclust software in chemometrics. Journal of Statistical Software, 18(6), 1–13.CrossRefGoogle Scholar
  21. Good, R. H., & Kaminski, R. A. (Eds.). (2002). Dynamic indicators of basic early literacy skills (6th ed.). Eugene: Institute for the Development of Educational Achievement.Google Scholar
  22. Handl, J., Knowles, J., & Kell, D. B. (2005). Computational cluster validation in post-genomic data analysis. Bioinformatics, 21(15), 3201–3212.CrossRefGoogle Scholar
  23. Hartigan, J. A., & Wong, M. A. (1979). A k-means clustering algorithm. Applied Statistics, 28, 100–108.CrossRefGoogle Scholar
  24. Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modelling: Guidelines for determining model fit. The Electronic Journal of Business Research Methods, 6(1), 53–60.Google Scholar
  25. Kanter, J. W., Mulick, P. S., Busch, A. M., Berlin, K. S., & Martell, C. R. (2006). The Behavioral Activation for Depression Scale (BADS): Psychometric properties and factor structure. Journal of Psychopathology and Behavioral Assessment, 29(3), 191–202.CrossRefGoogle Scholar
  26. Kanter, J. W., Rusch, L. C., Busch, A. M., & Sedivy, S. K. (2009). Confirmatory factor analysis of the Behavioral Activation for Depression Scale (BADS) in a community sample with elevated depressive symptoms. Journal of Psychopathology and Behavioral Assessment, 31, 36–42. Scholar
  27. Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data. An introduction to cluster analysis. New York: Wiley.zbMATHGoogle Scholar
  28. Kohonen, T. (1997). Self-organizing maps (2nd ed.). New York: Springer-Verlag.CrossRefGoogle Scholar
  29. Läge, D., Egli, S., Riedel, M., & Möller, H. J. (2012). Exploring the structure of psychopathological symptoms: A re-analysis of AMDP data by robust nonmetric multidimensional scaling. European Archives of Psychiatry and Clinical Neurosciences, 262, 227–238. Scholar
  30. Lewis-Fernandez, R., & Kleinman, A. (1994). Culture, personality, and psychopathology. Journal of Abnormal Psychology, 103(1), 67–71.CrossRefGoogle Scholar
  31. Li, M., Ding, C., Kanter, J. W., Zeng, Q., & Yang, D. (2014). Further evaluation of the psychometric properties of the behavioral activation for depression scale. International Journal of Psychology and Psychological Therapy, 14(1), 45–57.Google Scholar
  32. Liebovitch, L. S., Peluso, P. R., Norman, M. D., Su, J., & Gottman, J. M. (2011). Mathematical model of the dynamics of psychotherapy. Cognitive Neurodynamics, 5, 265–275. Scholar
  33. Lu, A., Bond, M. H., Friedman, M., & Chan, C. (2010). Understanding cultural influences on depression by analyzing a measure of its constituent symptoms. International Journal of Psychological Studies, 2(1), 55–70.CrossRefGoogle Scholar
  34. Markus, H. R., & Kitayama, S. (1991). Culture and the self: Implications for cognition, emotion, and motivation. Psychological Review, 98(2), 224–253.CrossRefGoogle Scholar
  35. Marsella, A. J., Sartorius, N., Jablensky, A., & Fenton, F. (1958). Crosscultural studies of depressive disorders: An overview. In A. Kleinman & B. Good (Eds.), Culture and depression (pp. 299–324). Berkeley, CA: Berkeley University of California Press.Google Scholar
  36. Maxwell, A. E. (1972). Difficulties in a dimensional description of symptomatology. British Journal of Psychiatry, 121, 19–26.CrossRefGoogle Scholar
  37. Molenaar, P. C. M. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50, 181–202. Scholar
  38. Molenaar, P. C. M., & Campbell, C. G. (2009). The new person-specific paradigm in psychology. Current Directions in Psychological Science, 18, 112–117. Scholar
  39. Raes, F., Hoes, D., Van Gucht, D., Kanter, J. W., & Hermans, D. (2010). The Dutch version of the Behavioral Activation for Depression Scale (BADS): Psychometric properties and factor structure. Journal of Behavioral Therapy and Exprimental Psychiatry, 41(3), 246–250.CrossRefGoogle Scholar
  40. Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.CrossRefGoogle Scholar
  41. Schlessinger, I. M., & Guttman, L. (1969). Smaller space analysis of intelligence and achievement tests. Psychological Bulletin, 71, 95–100.CrossRefGoogle Scholar
  42. Schwartz, S. H. (2006). Basic human values: Theory, measurement, and applications. Revue française de sociologie, 42, 249–288.Google Scholar
  43. Steiger, J. H., & Lind, J. M. (1980). Statistically based tests for the number of common factors. Iowa City: Paper presented at the Psychometric Society.Google Scholar
  44. Steinmeyer, E. M., & Möller, H. J. (1992). Facet theoretic analysis of the Hamilton–D Scale. Journal of Affective Disorders, 25, 53–61. Scholar
  45. Thurstone, L. L. (1947). Multiple factor analysis. Chicago: University of Chicago Press.zbMATHGoogle Scholar
  46. Tsai, J. L., & Chentsova-Dutton, Y. (2010). Understanding Depression across cultures. In I. H. Gotlib & C. L. Hammen (Eds.), Handbook of depression. New York: The guilford press.Google Scholar
  47. Tukey, J. W. (1980). We need both exporatory and confirmatory. The American Statistician, 34, 23–25.Google Scholar
  48. Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557–585.Google Scholar
  49. Zhang, B., Fokkema, M., Cuijpers, P., Li, J., Smits, N., & Beekman, A. (2011). Measurement invariance of the Center for Epidemiological Studies Depression Scale (CES-D) among Chinese and Dutch elderly. BMC Medical Research Methodology, 11, 74.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cody S. Ding
    • 1
    • 2
  1. 1.Department of Education Science and Professional ProgramUniversity of Missouri-St. LouisSt. LouisUSA
  2. 2.Center for NeurodynamicsUniversity of Missouri-St. LouisSt. LouisUSA

Personalised recommendations