Skip to main content

Advanced Wind Turbine Dynamics

  • Chapter
  • First Online:

Abstract

This chapter presents the geometrically exact beam theory implemented by the Legendre-spectral-finite-element (LSFE) method. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is incorporated in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. A numerical example using the NREL 5-MW wind turbine is provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework.

This chapter has been published on Journal of Wind Energy, Vol. 20, Issue 8, page 1439–1462.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bathe KJ, Cimento AP (1980) Some practical procedures for the solution of nonlinear finite element equations. Comput Methods Appl Mech Eng 22:59–85

    Article  Google Scholar 

  • Bauchau OA (2010) Flexible multibody dynamics. Springer, New York

    MATH  Google Scholar 

  • Bauchau O, Epple A, Heo S (2008) Interpolation of finite rotations in flexible multibody dynamics simulations. Proc Inst Mech Eng Part K J Multi-body Dyn 222:353–366

    Google Scholar 

  • Betsch P, Steinmann P (2002) Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int J Numer Methods Eng 54:1775–1788

    Article  MathSciNet  Google Scholar 

  • Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60:371–375

    Article  MathSciNet  Google Scholar 

  • Cook RD, Malkus DS, Plesha ME, Witt RJ (2001) Concepts and applications of finite element analysis, 4th edn. Wiley, New York

    Google Scholar 

  • Guntur S, Jonkman J, Schreck S, Jonkman B, Wang Q, Sprague MA, Singh M, Hind M, Sievers R (2016) FAST v8 verification and validation for a MW-scale wind turbine with aeroelastically tailored blades. In: Proceedings of the 34th ASME wind energy symposium, San Diego

    Google Scholar 

  • Hodges D (1990) A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. Int J Solids Struct 26:1253–1273

    Article  MathSciNet  Google Scholar 

  • Hodges DH (2006) Nonlinear composite beam theory. In: AIAA

    Book  Google Scholar 

  • Ibrahimbegović A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech Eng 122:11–26

    Article  Google Scholar 

  • Ibrahimbegović A, Mikdad MA (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int J Numer Methods Eng 41:781–814

    Article  MathSciNet  Google Scholar 

  • Jelenić G, Crisfield MA (1999) Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput Methods Appl Mech Eng 171:141–171

    Article  MathSciNet  Google Scholar 

  • Jonkman J, Jonkman B (2016) NWTC Information Portal (FAST v8). https://nwtc.nrel.gov/FAST8

  • Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory

    Google Scholar 

  • Reissner E (1973) On one-dimensional large-displacement finite-strain beam theory. Stud Appl Math LII 52:87–95

    Article  Google Scholar 

  • Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput Methods Appl Mech Eng 49:55–70

    Article  Google Scholar 

  • Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II. Comput Methods Appl Mech Eng 58:79–116

    Article  Google Scholar 

  • Wang Q, Yu W, Sprague MA (2013) Geometric nonlinear analysis of composite beams using Wiener-Milenković parameters. In: Proceedings of the 54th structures, structural dynamics, and materials conference, Boston

    Google Scholar 

  • Yu W, Blair M (2012) GEBT: a general-purpose nonlinear analysis tool for composite beams. Compos Struct 94:2677–2689

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Q. (2018). Advanced Wind Turbine Dynamics. In: Hu, W. (eds) Advanced Wind Turbine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-78166-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78166-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78165-5

  • Online ISBN: 978-3-319-78166-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics