Skip to main content

A New Multiscale Modeling and Simulation of Rolling Contact Fatigue for Wind Turbine Bearings

  • Chapter
  • First Online:
Advanced Wind Turbine Technology

Abstract

A hierarchical multiscale method is proposed in this chapter to study the rolling contact fatigue in wind turbine bearing with the consideration of lubricant effects. This multiscale model consists of a molecular model of lubricant and a continuum model of rolling contact components. At the nanoscale, molecular dynamics is employed to model the lubricant and to calculate the friction coefficient at the rolling contact surface. At the macroscale, the finite element method is used to conduct stress analysis of the rolling contact component so that the fatigue life can be predicted. The calculated friction coefficient is passed from the molecular model to the continuum model in the proposed multiscale model. The effect of fluctuating load on the rolling contact fatigue life is also studied in this chapter. The objective of this study is to develop a new multiscale framework which connects the nanoscale and the macroscale. It shall be noted that a commonly used fatigue life model is employed in the continuum model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berro H, Fillot N, Vergne P (2010) Molecular dynamics simulation of surface energy and ZDDP effects on friction in nano-scale lubricated contacts. Tribol Int 43:1811–1822

    Article  Google Scholar 

  • Bhargava V, Hahn GT, Rubin CA (1990) Rolling contact deformation, etching effects and failure of high strength steels. Metall Trans A 21:1921–1931

    Google Scholar 

  • Bhushan B, Israelachvili JN, Landman U (1995) Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374:607–616

    Article  Google Scholar 

  • Boardman B (1982) Crack initiation fatigue – data, analysis, trends and estimation, SAE Technical Paper 820682

    Google Scholar 

  • Chantrenne P, Raynaud M, Clapp PC, Rifkin J, Becquart CS (2000) Molecular dynamics simulations of friction. Heat Technol 18:49–56

    Google Scholar 

  • Chhowalla M, Amaratunga GA (2000) Thin films of fullerene-like MoS2 nanoparticles with ultra low friction and wear. Nature 407:164–167

    Article  Google Scholar 

  • Daw M, Baskes M (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453

    Article  Google Scholar 

  • Fatemi A, Socie DF (1988) A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct 11:149–165

    Article  Google Scholar 

  • Ghaednia H, Babaei H, Jackson R, Bozack M, Khodadadi JM (2013) The effect of nanoparticles on thin film elasto-hydrodynamic lubrication. Appl Phys Lett 103:263111

    Article  Google Scholar 

  • Ghaednia H, Jacksona RL, Khodadadi JM (2015) Experimental analysis of stable CuO nanoparticle enhanced lubricants. J Exp Nanosci 10:1–18

    Article  Google Scholar 

  • Ghaffari MA, Pahl E, Xiao S (2015) Three dimensional fatigue crack initiation and propagation analysis of a gear tooth under various load conditions and fatigue life extension with boron/epoxy patches. Eng Fract Mech 135:126–146

    Article  Google Scholar 

  • Halfpenny A, Bishop NWM (1997) Vibration fatigue, nCode International Ltd. 230 Woodbourn Road, Sheffield, S9 3LQ. UK

    Google Scholar 

  • Harrison JA, Colton RJ, Whit CT, Brenner DW (1993) Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces. Wear 168:127–133

    Article  Google Scholar 

  • Hoover W (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  • Ioannides E, Harris T (1985) A new fatigue life model for rolling bearings. ASME J Tribol 107:367–378

    Google Scholar 

  • Jalalahmadi B, Sadeghi F (2009) A voronoi finite element study of fatigue life scatter in rolling contacts. ASME J Tribol 131:022203

    Article  Google Scholar 

  • Keer LM, Bryant MD (1983) A pitting model for rolling contact fatigue. ASME J Lubr Tech 105:198–205

    Article  Google Scholar 

  • Ketko M, Rafferty J, Siepmann J, Potoff J (2008) Development of the TraPPE-UA force field for ethylene oxide. Fluid Phase Equilibr 274:44–49

    Article  Google Scholar 

  • Kudish II, Burris KW (2000) Modern state of experimentation and modeling in contact fatigue phenomenon: part II – analysis of the existing statistical mathematical models of bearing and gear fatigue life. New statistical model of contact fatigue. Tribol Trans 43:293–201

    Article  Google Scholar 

  • Lormand G, Meynaud G, Vincent A, Baudry G, Girodin D, Dudragne G (1998) From cleanliness to rolling fatigue life of bearings – a new approach. In: Hoo J, Green W (eds) Bearing steels: into the 21st century, ASTM STP No. 1327. ASTM Special Technical Publication, West Conshohocken, pp 55–69

    Google Scholar 

  • Lundberg G, Palmgren A (1947) Dynamic capacity of rolling bearings. Acta Polytech Scand Mech Eng Ser 1:1–52

    Google Scholar 

  • Lundberg G, Palmgren A (1952) Dynamic capacity of roller bearings. Acta Polytech Scand Mech Eng Ser 2:96–127

    Google Scholar 

  • Maharaj D, Bhushan B (2013) Effect of mos 2 and ws 2 nanotubes on nanofriction and wear reduction in dry and liquid environments. Tribol Lett 49:323–339

    Google Scholar 

  • Martin M, Siepmann J (1998) Transferable potentials for phase equilibria. 1. United-atom description. J Phys Chem 1012:2569–2577

    Google Scholar 

  • Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  • Omelyan I, Mryglod I, Folk R (2002) Optimized verlet-like algorithms for molecular dynamics simulations. Phys Rev E 65:056706

    Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19

    Article  Google Scholar 

  • Podrug S, Jelaska D, Glodez S (2008) Influence of different load models on gear crack path shapes and fatigue lives. Fatigue Fract Eng 31:327–339

    Article  Google Scholar 

  • Raje NN, Sadeghi F, Rateick RGJ, Hoeprich MR (2008) A numerical model for life scatter in rolling element bearings. ASME J Tribol 130:011011

    Article  Google Scholar 

  • Rapoport L, Fleisher N, Tenne R (2005) Applications of WS 2 (MoS 2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J Mater Chem 15:1782–1788

    Google Scholar 

  • Rosentsveig R, Gorodnev A, Feuerstein N, Friedman H, Zak A, Fleischer N, Tannous J, Dassenoy F, Tenne R (2009) Fullerene-like mos 2 nanoparticles and their tribological behavior. Tribol Lett 36:175–182

    Article  Google Scholar 

  • Sadeghi F, Jalalahmadi B, Slack TS, Raje N, Arakere NK (2009) A review of rolling contact fatigue. J Tribol 131:041403

    Article  Google Scholar 

  • Savio D, Fillot N, Vergne P, Zaccheddu M (2012) A model for wall slip prediction of confined n-alkanes: effect of wall-fluid interaction versus fluid resistance. Tribol Lett 46:11–22

    Article  Google Scholar 

  • Socie D (1993) Critical plane approaches for multiaxial fatigue damage assessment. Advances in Multiaxial Fatigue, ASTM STP 1191

    Google Scholar 

  • Spijker P, Anciaux G, Molinari JF (2011) Dry sliding contact between rough surfaces at the atomistic scale. Tribol Lett 44:279–285

    Article  Google Scholar 

  • Spijker P, Anciaux G, Molinari JF (2012) The effect of loading on surface roughness at the atomistic level. Comput Mech 50:273–283

    Article  Google Scholar 

  • Stubbs J, Potoff J, Siepmann J (2004) Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones, and aldehydes. J Phys Chem 108:17596–17605

    Article  Google Scholar 

  • Tallian T (1992) Simplified contact fatigue life prediction model – part II: new model. ASME J Tribol 114:214–222

    Article  Google Scholar 

  • Tao X, Jiazheng Z, Kang X (1996) The ball-bearing effect of diamond nanoparticles as an oil additive. J Phys D: Appl Phys 29:2932

    Article  Google Scholar 

  • Tarasova S, Kolubaeva A, Belyaeva S, Lernerb M, Tepperc F (2002) Study of friction reduction by nanocopper additives to motor oil. Wear 252:63–69

    Article  Google Scholar 

  • Thompson P, Robbins M (1990a) Origin of stick-slip motion in boundary lubrication. Science 250:792–794

    Article  Google Scholar 

  • Thompson P, Robbins M (1990b) Shear flow near solids: epitaxial order and flow boundary conditions. Phys Rev A 41:6830–6837

    Article  Google Scholar 

  • Vincent A, Lormand G, Lamagnere P, Gosset L, Girodin D, Dudragne G, Fougeres R (1998) From white etching areas formed around inclusions to crack nucleation in bearing steels under rolling contact. In: Hoo J, Green W (eds) Bearing steels: into the 21st century, ASTM STP No. 1327. ASTM Special Technical Publication, West Conshohocken, pp 109–123

    Google Scholar 

  • Wick C, Martin M, Siepmann J (2000) Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkanes and of alkylbenzenes. J Phys Chem 104:8008–8016

    Article  Google Scholar 

  • Xu G, Sadeghi F (1996) Spall initiation and propagation due to debris denting. Wear 201:106–116

    Article  Google Scholar 

  • Zhang L, Tanaka H (1998) Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding. Tribol Int 31:425–433

    Article  Google Scholar 

  • Zheng X, Zhun H, Tieu AK, Kosasih B (2013a) A molecular dynamics simulation of 3D rough lubricated contact. Tribol Int 67:217–221

    Article  Google Scholar 

  • Zhou RS (1993) Surface topography and failure life of rolling contact bearings. Tribol Trans 36:329–340

    Article  Google Scholar 

  • Zhou RS, Cheng HS, Mura T (1989) Micropitting in rolling and sliding contact under mixed lubrication. ASME J Tribol 111:605–613

    Article  Google Scholar 

  • Zheng X, Zhu H, Kosash B, Tieu A (2013b) A molecular dynamics simulation of boundary lubrication: the effect of n-alkanes chain length and normal load. Wear 301:62–69

    Article  Google Scholar 

  • Zheng X, Zhun H, Tieu AK, Kosasih B (2014) Roughness and lubricant effect on 3D atomic asperity contact. Tribol Lett 53:215–223

    Article  Google Scholar 

  • Zheng X (2014) Molecular dynamics simulation of boundary lubricant contacts. Ph.D. thesis, University of Wollongong

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Ali Ghaffari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghaffari, M.A., Xiao, S. (2018). A New Multiscale Modeling and Simulation of Rolling Contact Fatigue for Wind Turbine Bearings. In: Hu, W. (eds) Advanced Wind Turbine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-78166-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78166-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78165-5

  • Online ISBN: 978-3-319-78166-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics