Skip to main content

Gearbox of Wind Turbine

  • Chapter
  • First Online:
Advanced Wind Turbine Technology

Abstract

A gearbox is often used in a wind turbine to increase the rotational speed from a low-speed main shaft to a high-speed shaft connecting with an electrical generator. Gears in wind turbine gearbox are subjected to severe cyclic loading due to variable wind loads that are stochastic in nature. Thus, the failure rate of gearbox system is reported to be relatively higher than the other wind turbine components. It is known in wind energy industry that improving reliability of gearbox designs is one of the key points to reduce wind turbine downtime and to make wind energy competitive as compared to fossil fuels. However, a wind turbine is a complex multi-physics system involving random wind loads, rotor blade aerodynamics, gear dynamics, electrical generator, and control systems. How to get an accurate prediction of the gearbox lifetime is a challenging issue. Furthermore, although some studies about wind turbine gear failure modes are carried out, limited studies have been carried out regarding design optimization including the reliability-based design optimization (RBDO) of the gear system considering wind load and manufacturing uncertainties.

In order to address the essential and challenging issue on design optimization of wind turbine gearbox under wind load and gear manufacturing uncertainties, three contributions have been made in this chapter: (1) development of an efficient numerical procedure for gear dynamics simulation of complex multibody gear system based on the multivariable tabular contact search algorithm to account for detailed gear tooth contact geometry with profile modifications or surface imperfections; (2) development of an integrated multibody dynamics computational framework for deterministic design optimization (DDO) and RBDO of the wind turbine gearbox using the gear dynamics simulation method developed in (1) and incorporating pitting gear tooth contact fatigue model, a dynamic wind load uncertainty model, and a wind turbine aerodynamic model using FAST; and (3) development of the DDO and RBDO of a wind turbine gearbox to minimize total weight while ensuring 20-year lifetime considering dynamic wind load and gear manufacturing uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alemayehu FM, Osire SE (2015) Probabilistic performance of helical compound planetary system in wind turbine. ASME J Comput Nonlinear Dyn 10:1–12

    Google Scholar 

  • Aydin E (2013) Determination of best drive train technology for future onshore wind turbines as a function of the output power. Master Thesis, Eindhoven Technical University

    Google Scholar 

  • Barbieri M, Scagliarini G, Bonori G, Pellicano F, Bertccchi G (2008) Optimization methods for spur gear dynamics. In: Proceedings of EUROMECH nonlinear dynamics conference, Saint Petersburg

    Google Scholar 

  • Budynas R, Nisbett K (2008) Shigley’s mechanical engineering design, 9th edn. McGraw-Hill, New York

    Google Scholar 

  • Cardona A (1997) Three-dimensional gears modeling in multibody systems analysis. Int J Numer Methods Eng 40:357–381

    Article  Google Scholar 

  • Choi Y, Liu CR (2006a) Rolling contact fatigue life of finish hard machined surfaces, part 1. Model development. Wear 261:485–491

    Article  Google Scholar 

  • Choi Y, Liu CR (2006b) Rolling contact fatigue life of finish hard machined surfaces, part 2. Experimental verification. Wear 261:492–499

    Article  Google Scholar 

  • Choi Y, Liu CR (2006c) Rolling contact fatigue life of finish hard machined surfaces. Wear 261:485–491

    Article  Google Scholar 

  • Cornell RW (1981) Compliance and stress sensitivity of spur gear teeth. ASME J Mech Des 103:447–459

    Article  Google Scholar 

  • Crossland B (1970) The effect of pressure on the fatigue of metals. In: Pugh H (ed) Mechanical Behaviour of Materials Under Pressure. Elsevier, London, pp 299–354

    Google Scholar 

  • Dang VK (1973) Sur La Resistance a La Fatigue des Metaux. Sci Tech Armem 47:647–722

    Google Scholar 

  • Dong W, Xing Y, Moan T, Gao Z (2013) Time domain-based gear contact fatigue analysis of a wind turbine drivetrain under dynamic conditions. Int J Fatigue 48:133–146

    Article  Google Scholar 

  • Ebrahimi S, Eberhard P (2006) Rigid-elastic modeling of meshing gear wheels in multibody systems. Multibody Sys Dyn 16:55–71

    Article  Google Scholar 

  • Errichello R (2000) Wind turbine gearbox failures. GEARTECH. Townsend, Montana, USA

    Google Scholar 

  • Errichello R, Muller J (2012a) Gearbox reliability collaborative gearbox 1 failure analysis report. NREL/SR-5000-53062

    Google Scholar 

  • Errichello R, Muller J (2012b) Gearbox reliability collaborative gearbox 1 failure analysis report. NREL/SR-500-53062

    Google Scholar 

  • Ghribi D, Bruyere J, Velex P, Octrue M, Mohamed H (2012) Robust optimization of gear tooth modifications using a genetic algorithm. In: Condition monitoring of machinery in non-stationary operations. Springer, Berlin, pp 589–597

    Google Scholar 

  • Glodez G, Flasker J, Ren Z (1997) A new model for the numerical determination of pitting resistance of gear teeth flanks. Fatigue Fract Eng Mater Struct 20(1):71–83

    Article  Google Scholar 

  • Guo Y, Keller J, LaCava W (2012a) Combined effects of gravity, bending moment, bearing clearance, and input torque on wind turbine planetary gear load sharing. NREL/CP-5000-55968

    Google Scholar 

  • Guo Y, LaCava W, Xing Y, Moan T (2012b) Determining wind turbine gearbox model complexity using measurement validation and cost comparison. NREL/CP-5000-54545

    Google Scholar 

  • Guo Y, Bergua R, Dam JV, Jove J, Campbell J (2015) Improving wind turbine drivetrain designs to minimize the impacts of non-torque loads. Wind Energy 18:2199–2222

    Article  Google Scholar 

  • Haug EJ (1989) Computer aided kinematics and dynamics of mechanical systems. Ally and Bacon, Boston

    Google Scholar 

  • Helsen J, Vanhollebeke F, Marrantb B, Vandepitte D, Desmet W (2011) Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes. Renew Energy 36:3098–3113

    Article  Google Scholar 

  • Houser DR, Bolze VM, Graber JM (1996) A comparison of predicted and measured dynamic and static transmission error for spur and helical gear sets. In: SEM 14th international modal analysis conference, Dearborn

    Google Scholar 

  • Hu W, Choi KK, Zhupanska O, Buchholz J (2016a) Integrating variable wind load, aerodynamic, and structural analyses towards accurate fatigue life prediction in composite wind turbine blades. Struct Multidiscip Optim 53:375–394

    Article  MathSciNet  Google Scholar 

  • Hu W, Choi KK, Cho H (2016b) Reliability-based design optimization of wind turbine blades for fatigue life under dynamic wind load uncertainty. Struct Multidiscip Optim 54:953–970

    Article  Google Scholar 

  • International Organization for Standardization (2005) Wind turbines part 1: design requirements, IEC 61400-1:2005. ISO, Geneva

    Google Scholar 

  • Jiang B, Zheng X, Wang M (1993) Calculation for rolling contact fatigue life and strength of case-hardened gear materials by computer. J Test Eval 21:9–13

    Article  Google Scholar 

  • Jonkman BJ (2009) TurbSim user’s guide. Technical Report NREL/TP-500-46198

    Google Scholar 

  • Jonkman JM, Buhl ML (2005) FAST user’s guide. Technical Report NREL/TP-500-38230

    Google Scholar 

  • Kahraman A (1994) Planetary gear train dynamics. ASME J Mech Des 116:71–720

    Google Scholar 

  • Kapelevich A, Shekhtman Y (2009) Gear tooth fillet profile optimization. Gear Solut 9:63–69

    Google Scholar 

  • Karagiannis I, Theodossiades S, Rahnejat H (2012) On the dynamics of lubricated hypoid gears. Mech Mach Theory 48:94–120

    Article  Google Scholar 

  • Kato M, Deng G, Inoue K, Takatsu N (1993) Evaluation of the strength of carburized spur gear teeth based on fracture mechanics. Bull Japan Soc Mech Eng Ser C 36:233–234

    Google Scholar 

  • Keer LM, Bryant MD (1983) A pitting model for rolling contact fatigue. ASME Tribol 105:198–205

    Google Scholar 

  • Kin V (1994) Computerized analysis of gear meshing based on coordinate measurement data. ASME J Mech Des 116:738–744

    Article  Google Scholar 

  • Lee CH, Bae DS, Song JS (2012) Multibody approach of gear transmission error dynamics. In: Proceedings of Asian conference on multibody dynamics, Shanghai

    Google Scholar 

  • Lesmerises A, Crowley D (2013) Effect of different Workscope strategies on wind turbine gearbox life cycle repair costs. Int J Prognos Health Manag 17:1–7

    Google Scholar 

  • Li H, Terao A, Sugiyama H (2015) Application of tabular contact search method to multibody gear dynamics simulation with tooth surface imperfections. IMechE J Multibody Dyn 229:274–290

    Google Scholar 

  • Li H, Sugiyama H, Cho H, Choi KK, Gaul NJ (2016) Numerical procedure for design optimization of wind turbine drivetrain using multibody gear dynamics simulation considering wind load uncertainty. In: Proceedings of the ASME 2016 IDETC & CIE conference, Charlotte, DETC2016-59654

    Google Scholar 

  • Li H, Cho H, Sugiyama H, Choi KK, Gaul NJ (2017) Reliability-based design optimization of wind turbine drivetrain with integrated multibody gear dynamics simulation considering wind load uncertainty. Struct Multidiscip Optim 56:183–201

    Article  Google Scholar 

  • Litvin FL, Fuentes A (2004) Gear geometry and applied theory, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Liu J, Zenner H (2003) Fatigue limit of ductile metals under multiaxial loading. Biaxial Multiaxial Fatigue Fract 31:147–164

    Google Scholar 

  • Maatar M, Velex P (1997) Quasi-static and dynamic analysis of narrow-faced helical gears with profile and lead modifications. ASME Mech Des 119:474–480

    Article  Google Scholar 

  • Madhusekhar D, Madhava Reddy K (2014) Reliability based optimum design of a gear box. Int J Eng Res Appl 4(10):1–8

    Google Scholar 

  • Melchers RE (1999) Structural reliability analysis and prediction. Wiley, Chichester

    Google Scholar 

  • Milburn A (2011) Wind turbine gearbox wear and failure modes and detection methods. NREL Wind Turbine Condition Monitoring Workshop

    Google Scholar 

  • Mohammadpour M, Theodossiades S, Rahnejat H (2014) Multiphysics investigations on the dynamics of differential hypoid gears. ASME J Vib Acoust 136:1–3

    Article  Google Scholar 

  • Muljadi E, Butterfield CP (2000) Pitch-controlled variable-speed wind turbine generation. Technical Report NREL/CP-500-27143

    Google Scholar 

  • Newman CJ (1992) Small-crack test method. ASTM STP 1149:6–33

    Google Scholar 

  • Osman T, Velex P (2011) A model for the simulation of the interactions between dynamic tooth loads and contact fatigue in spur gears. Tribol Int 46:84–96

    Article  Google Scholar 

  • Oyague F (2009) Gearbox modeling and load simulation of a baseline 750-kW wind turbine using State-of-the-Art simulation code. NREL/TP-500-41160

    Google Scholar 

  • Ozguven HN, Houser DR (1988) Mathematical models used in gear dynamics – a review. J Sound Vib 121:383–411

    Article  Google Scholar 

  • Palermo A, Mundo D, Hadjit R, Desmet W (2013) Multibody element for spur and helical gear meshing based on detailed three-dimensional contact calculations. Mech Mach Theory 62:13–30

    Article  Google Scholar 

  • Parker RG, Agashe V, Vijayakar SM (2000) Dynamic response of a planetary gear system using a finite element/contact mechanics model. ASME J Mech Des 122:305–311

    Article  Google Scholar 

  • Peeters JLM, Vandepitte D, Sas P (2005) Analysis of internal drive train dynamics in a wind turbine. Wind Energy 9:141–161

    Article  Google Scholar 

  • Piegl LA, Tiller W (1996) The NURBS book. Springer, New York

    MATH  Google Scholar 

  • Qin D, Wang J, Lin TC (2009) Flexible multibody dynamics modeling of a horizontal wind turbine drivetrain system. ASME J Comput Nonlinear Dyn 131:1–8

    Google Scholar 

  • Sainsot P, Velex P (2004) Contribution of gear body to tooth deflections- a new bi-dimensional analytical formula. ASME J Mech Des 126:748–752

    Article  Google Scholar 

  • Sansalvador RL, Jauregui JC (1993) Practical optimization of helical gears using computer software. Gear Technol 10:16–21

    Google Scholar 

  • Shabana AA (2010) Computational dynamics, 3rd edn. Wiley, Chichester

    Book  Google Scholar 

  • Shabana AA, Zaazaa KE, Sugiyama H (2008) Railroad vehicle dynamics: computational approach. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Sheng S (2012) Wind turbine gearbox condition monitoring round robin study. NREL/TP-5000-54530

    Google Scholar 

  • Sheng S, McDade M, Errichello R (2011) Wind turbine gearbox failure modes-a brief. In: Proceedings of ASME/STLE 2011 international joint tribology conference, Los Angeles

    Google Scholar 

  • Shikin EV, Plis AI (1995) Handbook on splines for the user. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Spitas V, Spitas C (2007) Optimizing involute gear design for maximum bending strength and equivalent pitting resistance. Proc IMechE 221:479–488

    Article  Google Scholar 

  • Straffelini G, Molinari A, Marcupuscas T (2000) Identification of rolling-sliding damage mechanisms in porous alloys. Metall Mater Trans A 31:3091–3099

    Article  Google Scholar 

  • Sundaresan S, Ishii K, Houser DR (1991) A procedure using manufacturing variance to design gears with minimum transmission error. ASME J Mech Des 113:318–324

    Article  Google Scholar 

  • Tallian TE (1983) Rolling contact fatigue. SKF Ball Bear J 217:5–13

    Google Scholar 

  • Tavakoli MS, Houser DR (1986) Optimum profile modifications for the minimization of static transmission errors of spur gears. ASME J Mech Trans Auto Des 108:86–94

    Article  Google Scholar 

  • Vanderplaats GN, Chen X, Zhang N-T (1988) Gear optimization. NASA CR-4201, pp 1–60

    Google Scholar 

  • Vanhollebeke F, Peeters P, Helsen J, Lorenzo ED, Manzato S, Peeters J, Vandepitte D, Desmet W (2015) Large scale validation of a flexible multibody wind turbine gearbox model. ASME J Comput Nonlinear Dyn 10:1–12

    Google Scholar 

  • Veers PS, Winterstein SR (1998) Application of measured loads to wind turbine fatigue and reliability analysis. ASME J Solar Energy Eng 120:233–239

    Article  Google Scholar 

  • Velex P, Bruyere J, Houser DR (2011) Some analytical results on transmission errors in narrow-faced spur and helical gears: influence of profile modifications. ASME J Mech Des 133:1–11

    Article  Google Scholar 

  • Vijayakar S (1991) A combined surface integral and finite element solution for a three-dimensional contact problem. Int J Numer Methods Eng 31:525–545

    Article  Google Scholar 

  • Wang J, Li R, Peng X (2003) Survey of nonlinear vibration of gear transmission systems. ASME Appl Mech Rev 56:309–329

    Article  Google Scholar 

  • Yu CJ (1998) Design optimization for robustness using quadrature factorial models. Eng Optim 30:203–225

    Article  Google Scholar 

  • Zhang Y, Litvin FL, Maruyama N, Takeda R, Sugimoto M (1994) Computerized analysis of meshing and contact of gear real tooth surfaces. ASME J Mech Des 116:738–744

    Article  Google Scholar 

  • Ziegler P, Eberhard P (2009) An elastic multibody model for the simulation of impacts on gear wheels. In: Proceedings of ECCOMAS thematic conference on multibody dynamics, Warsaw

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaxia Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H. (2018). Gearbox of Wind Turbine. In: Hu, W. (eds) Advanced Wind Turbine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-78166-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78166-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78165-5

  • Online ISBN: 978-3-319-78166-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics