Skip to main content

Next Generation Payloads for ADCs

  • Chapter
  • First Online:
Innovations for Next-Generation Antibody-Drug Conjugates

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The clinical success of gemtuzumab ozogamicin, brentuximab vedotin and ado-trastuzumab emtansine has spurred significant investment into new ADC payloads that may expand the utility of ADC technology. Innovations in the past 5–10 years have resulted in the identification of new payloads that are overcoming resistance mechanisms, showing efficacy against slow growing tumors, and enabling the use of biomarkers to better understand ADC PK/PD relationships. Moreover, ADC technology is now enabling the delivery of steroids, anti-inflammatory agents, and anti-infectives to specific cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perez HL, Cardarelli PM, Deshpande S et al (2014) Antibody-drug conjugates: current status and future directions. Drug Discov Today 19:869–881. https://doi.org/10.1016/j.drudis.2013.11.004

    Article  PubMed  CAS  Google Scholar 

  2. Ricart AD (2011) Antibody-drug conjugates of calicheamicin derivative: Gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin Cancer Res 17:6417–6427. https://doi.org/10.1158/1078-0432.CCR-11-0486

    Article  PubMed  CAS  Google Scholar 

  3. Terriou L, Bonnet S, Debarri H et al (2013) Brentuximab vedotin: new treatment for CD30+ lymphomas. Bull Cancer 100:775–779. https://doi.org/10.1684/bdc.2013.1778

    Article  PubMed  CAS  Google Scholar 

  4. Corrigan PA, Cicci TA, Auten JJ, Lowe DK (2014) Ado-trastuzumab emtansine: a HER2-positive targeted antibody-drug conjugate. Ann Pharmacother 48:1484–1493

    Article  CAS  PubMed  Google Scholar 

  5. Mendelsohn BA, Barnscher SD, Snyder JT et al (2017) Investigation of hydrophilic Auristatin derivatives for use in antibody drug conjugates. Bioconjug Chem 28:371–381. https://doi.org/10.1021/acs.bioconjchem.6b00530

    Article  PubMed  CAS  Google Scholar 

  6. Lyon RP, Bovee TD, Doronina SO et al (2015) Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 33:733–736. https://doi.org/10.1038/nbt.3212

    Article  PubMed  CAS  Google Scholar 

  7. Maderna A, Doroski M, Subramanyam C et al (2014) Discovery of cytotoxic Dolastatin 10 analogues with N-terminal modifications. J Med Chem 57:10527–10543. https://doi.org/10.1021/jm501649k

    Article  PubMed  CAS  Google Scholar 

  8. Damelin M, Bankovich A, Bernstein J et al (2017) A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions. Sci Transl Med 9:1–12. https://doi.org/10.1126/scitranslmed.aag2611

    Article  CAS  Google Scholar 

  9. Tumey LN, Li F, Rago B et al (2017) Site selection: a case study in the identification of optimal cysteine engineered antibody drug conjugates. AAPS J 19:1123–1135. https://doi.org/10.1208/s12248-017-0083-7

    Article  PubMed  CAS  Google Scholar 

  10. Strop P, Tran T-T, Dorywalska M et al (2016) RN927C, a site-specific Trop-2 antibody-drug conjugate (ADC) with enhanced stability, is highly efficacious in preclinical solid tumor models. Mol Cancer Ther 15:2698–2708. https://doi.org/10.1158/1535-7163.MCT-16-0431

    Article  PubMed  CAS  Google Scholar 

  11. Geierstanger J, Grunewald B, Yunho OW, et al (2015) Cytotoxic Peptides and Conjugates Thereof. WO2015/95301

    Google Scholar 

  12. Murray BC, Peterson MT, R a F (2015) Chemistry and biology of tubulysins: antimitotic tetrapeptides with activity against drug resistant cancers. Nat Prod Rep 32:654. https://doi.org/10.1039/C4NP00036F

    Article  PubMed  CAS  Google Scholar 

  13. Reddy JA, Dorton R, Dawson A et al (2009) In vivo structural activity and optimization studies of folate-tubulysin conjugates. Mol Pharm 6:1518–1525. https://doi.org/10.1021/mp900086w

    Article  PubMed  CAS  Google Scholar 

  14. Kularatne SA, Venkatesh C, Santhapuram HK et al (2010) Synthesis and biological analysis of prostate-specific membrane antigen-targeted anticancer prodrugs. J Med Chem 53:7767–7777. https://doi.org/10.1021/jm100729b

    Article  CAS  PubMed  Google Scholar 

  15. Leverett CA, Sukuru SCK, Vetelino BC et al (2016) Design, synthesis, and cytotoxic evaluation of novel Tubulysin analogs as ADC payloads. ACS Med Chem Lett. acsmedchemlett.6b00274. https://doi.org/10.1021/acsmedchemlett.6b00274

  16. Nathan Tumey L, Leverett CA, Vetelino B et al (2016) Optimization of Tubulysin antibody-drug conjugates: a case study in addressing ADC metabolism. ACS Med Chem Lett 7:977–982. https://doi.org/10.1021/acsmedchemlett.6b00195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cong Q, Cheng H, Gangwar S (2014) Preparation of antimitotic compounds structurally related to tubulysins and their conjugates for targeted delivery and their use for treating cancers. US2014/0227295

    Google Scholar 

  18. Li JY, Perry SR, Muniz-Medina V et al (2016) A Biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 29:117–129. https://doi.org/10.1016/j.ccell.2015.12.008

    Article  PubMed  CAS  Google Scholar 

  19. Kovtun YV, Audette CA, Mayo MF et al (2010) Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res 70:2528–2537. https://doi.org/10.1158/0008-5472.CAN-09-3546

    Article  PubMed  CAS  Google Scholar 

  20. Pillow TH, Tien J, Parsons-Reponte KL et al (2014) Site-specific trastuzumab maytansinoid antibody-drug conjugates with improved therapeutic activity through linker and antibody engineering. J Med Chem 57:7890–7899. https://doi.org/10.1021/jm500552c

    Article  PubMed  CAS  Google Scholar 

  21. Widdison WC, Ponte JF, Coccia JA et al (2015) Development of Anilino-Maytansinoid ADCs that efficiently release cytotoxic metabolites in cancer cells and induce high levels of bystander killing. Bioconjug Chem 26:2261–2278. https://doi.org/10.1021/acs.bioconjchem.5b00430

    Article  PubMed  CAS  Google Scholar 

  22. Steinkuhler MC, Gallinari MP, Osswald B et al (2016) Cryptophycin-based antibody-drug conjugates with novel self-immolative linkers. WO2016146638A1

    Google Scholar 

  23. Bernardes Goncalo JL, Casi G, Trussel S et al (2012) A traceless vascular-targeting antibody-drug conjugate for cancer therapy. Angew Chem Int Ed Engl 51:941–944

    Article  CAS  PubMed  Google Scholar 

  24. Liang ZX (2010) Complexity and simplicity in the biosynthesis of enediyne natural products. Nat Prod Rep 27:499–528. https://doi.org/10.1039/b908165h

    Article  PubMed  CAS  Google Scholar 

  25. Damelin M, Bankovich A, Park A et al (2015) Anti-EFNA4 calicheamicin conjugates effectively target triple-negative breast and ovarian tumor-initiating cells to result in sustained tumor regressions. Clin Cancer Res 21:4165–4173. https://doi.org/10.1158/1078-0432.CCR-15-0695

    Article  PubMed  CAS  Google Scholar 

  26. Jain N, O’Brien S, Thomas D, Kantarjian H (2014) Inotuzumab ozogamicin in the treatment of acute lymphoblastic leukemia. Front Biosci (Elite Ed) 6:40–45

    Google Scholar 

  27. Pilorge S, Rigaudeau S, Rabian F et al (2014) Fractionated gemtuzumab ozogamicin and standard dose cytarabine produced prolonged second remissions in patients over the age of 55 years with acute myeloid leukemia in late first relapse. Am J Hematol 89:399–403. https://doi.org/10.1002/ajh.23653

    Article  PubMed  CAS  Google Scholar 

  28. Gavrilyuk J, Sisodiya, Vikram N (2016) Calicheamicin Constructs and Methods of Use. WO/2016/172273

    Google Scholar 

  29. Donaghy H (2016) Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 8:659–671. https://doi.org/10.1080/19420862.2016.1156829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chowdari NS, Gangwar S, Sufi B (2013) Enediyne compounds, conjugates thereof, and uses and methods thereof. WO/2013/122823

    Google Scholar 

  31. Mantaj J, Jackson PJM, Rahman KM, Thurston DE (2017) From Anthramycin to Pyrrolobenzodiazepine (PBD)-containing antibody–drug conjugates (ADCs). Angew Chem Int Ed 56:462–488. https://doi.org/10.1002/anie.201510610

    Article  CAS  Google Scholar 

  32. Jeffrey SC, Burke PJ, Lyon RP et al (2013) A potent anti-CD70 antibody-drug conjugate combining a Dimeric Pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem 24:1256–1263. https://doi.org/10.1021/bc400217g

    Article  PubMed  CAS  Google Scholar 

  33. Sutherland MSK, Walter RB, Jeffrey SC et al (2013) SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood 122:1455–1463. https://doi.org/10.1182/blood-2013-03-491506

    Article  CAS  Google Scholar 

  34. Sutherland MSK, Yu C, Walter RB et al (2015) SGN-CD123A, a Pyrrolobenzodiazepine dimer linked anti-CD123 antibody drug conjugate, demonstrates effective anti-leukemic activity in multiple preclinical models of AML. Blood 126:330

    Google Scholar 

  35. Lewis T, Olson DJ, Gordon KA et al (2016) Abstract 1195: SGN-CD352A: a novel humanized anti-CD352 antibody-drug conjugate for the treatment of multiple myeloma. Cancer Res 76:1195–1195. https://doi.org/10.1158/1538-7445.AM2016-1195

    Article  Google Scholar 

  36. Takeshita A (2013) Efficacy and resistance of gemtuzumab ozogamicin for acute myeloid leukemia. Int J Hematol 97:703–716. https://doi.org/10.1007/s12185-013-1365-1

    Article  PubMed  CAS  Google Scholar 

  37. Cianfriglia M (2013) The biology of MDR1-P-glycoprotein (MDR1-Pgp) in designing functional antibody drug conjugates (ADCs): the experience of gemtuzumab ozogamicin. Ann Ist Super Sanita 49:150–168. https://doi.org/10.4415/ann_13_02_07

    Article  PubMed  CAS  Google Scholar 

  38. Tiberghien AC, Levy JN, Masterson LA et al (2016) Design and synthesis of Tesirine, a clinical antibody-drug conjugate Pyrrolobenzodiazepine dimer payload. ACS Med Chem Lett 7:983–987. https://doi.org/10.1021/acsmedchemlett.6b00062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Saunders LR, Bankovich AJ, Anderson WC et al (2015) A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo HHS public access. Sci Transl Med 7:302–136. https://doi.org/10.1126/scitranslmed.aac9459

    Article  CAS  Google Scholar 

  40. Flynn MJ, Zammarchi F, Tyrer PC et al (2016) ADCT-301, a Pyrrolobenzodiazepine (PBD) dimer-containing antibody-drug conjugate (ADC) targeting CD25-expressing hematological malignancies. Mol Cancer Ther 15:2709–2721. https://doi.org/10.1158/1535-7163.MCT-16-0233

    Article  PubMed  CAS  Google Scholar 

  41. Miller ML, Fishkin NE, Li W et al (2016) A new class of antibody-drug conjugates with potent DNA alkylating activity. Mol Cancer Ther 15:1870–1878. https://doi.org/10.1158/1535-7163.MCT-16-0184

    Article  PubMed  CAS  Google Scholar 

  42. Zhao RY, Wilhelm SD, Audette C et al (2011) Synthesis and evaluation of hydrophilic linkers for antibody-Maytansinoid conjugates. J Med Chem 54:3606–3623. https://doi.org/10.1021/jm2002958

    Article  PubMed  CAS  Google Scholar 

  43. Ma Y, Khojasteh SC, Hop CECA et al (2016) Antibody drug conjugates differentiate uptake and DNA alkylation of pyrrolobenzodiazepines in tumors from organs of xenograft mice. Drug Metab Dispos 44:1958–1962. https://doi.org/10.1124/dmd.116.073031

    Article  PubMed  CAS  Google Scholar 

  44. Thevanayagam L, Bell A, Chakraborty I et al (2013) Novel detection of DNA-alkylated adducts of antibody-drug conjugates with potentially unique preclinical and biomarker applications. Bioanalysis 5:1073–1081. https://doi.org/10.4155/bio.13.57

    Article  PubMed  CAS  Google Scholar 

  45. Carter CA, Waud WR, Li LH et al (1996) Preclinical antitumor activity of bizelesin in mice. Clin Cancer Res 2:1143–1149

    PubMed  CAS  Google Scholar 

  46. Chari RVJ, Jackel KA, Bourret LA et al (1995) Enhancement of the selectivity and antitumor efficacy of a CC-1065 analog through immunoconjugate formation. Cancer Res 55:4079–4084

    PubMed  CAS  Google Scholar 

  47. Zhao RY, Erickson HK, Leece BA et al (2012) Synthesis and biological evaluation of antibody conjugates of phosphate prodrugs of cytotoxic DNA alkylators for the targeted treatment of cancer. J Med Chem 55:766–782. https://doi.org/10.1021/jm201284m

    Article  PubMed  CAS  Google Scholar 

  48. Tumey LN, Rago B, Han X (2015) In vivo biotransformations of antibody-drug conjugates. Bioanalysis 7:1649–1664. https://doi.org/10.4155/bio.15.84

    Article  PubMed  CAS  Google Scholar 

  49. Owonikoko TK, Hussain A, Stadler WM et al (2016) First-in-human multicenter phase i study of BMS-936561 (MDX-1203), an antibody-drug conjugate targeting CD70. Cancer Chemother Pharmacol 77:155–162. https://doi.org/10.1007/s00280-015-2909-2

    Article  PubMed  CAS  Google Scholar 

  50. Dokter W, Ubink R, van der Lee M et al (2014) Preclinical profile of the HER2-targeting ADC SYD983/SYD985: introduction of a new duocarmycin-based linker-drug platform. Mol Cancer Ther 13:2618–2629. https://doi.org/10.1158/1535-7163.MCT-14-0040-T

    Article  PubMed  CAS  Google Scholar 

  51. van der Lee MMC, Groothuis PG, Ubink R et al (2015) The preclinical profile of the Duocarmycin-based HER2-targeting ADC SYD985 predicts for clinical benefit in low HER2-expressing breast cancers. Mol Cancer Ther 14:692–703. https://doi.org/10.1158/1535-7163.MCT-14-0881-T

    Article  PubMed  CAS  Google Scholar 

  52. O’Donnell CJ Discovery of Novel Linker payloads and antibody drug conjugates for the treatment of cancer. http://worldadc-usa.com/wp-content/uploads/sites/99/2016/10/Chris-ODonnell-1.pdf. Accessed 28 Mar 2017

  53. Maderna A, Subramanyam C, Tumey LN, et al (2016) Preparation of bifunctional cytotoxic agents containing the CTI pharmacophore including dimers and antibody conjugates for treating cancer. WO/2016/151432

    Google Scholar 

  54. Trail PA, Willner D, Lasch SJ et al (1993) Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261:212–215. https://doi.org/10.1126/science.8327892

    Article  PubMed  CAS  Google Scholar 

  55. Burke PJ, Senter PD, Meyer DW et al (2009) Design, synthesis , and biological evaluation of antibody - drug conjugates comprised of potent Camptothecin analogues. Bioconjug Chem 20:1242–1250

    Article  CAS  PubMed  Google Scholar 

  56. Nakada T, Masuda T, Naito H et al (2016) Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Bioorg Med Chem Lett 26:1542–1545. https://doi.org/10.1016/j.bmcl.2016.02.020

    Article  CAS  PubMed  Google Scholar 

  57. Ogitani Y, Hagihara K, Oitate M et al (2016) Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody???Drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci 107:1039–1046. https://doi.org/10.1111/cas.12966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tamura K, Shitara K, Naito Y et al (2016) Single agent activity of DS-8201a, a HER2-targeting antibody-drug conjugate, in breast cancer patients previously treated with T-DM1: phase 1 dose escalation. Ann Oncol 27:552–587. https://doi.org/10.1093/annonc/mdw435.7

    Article  Google Scholar 

  59. Cardillo TM, Govindan SV, Sharkey RM et al (2015) Sacituzumab govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem 26:919–931. https://doi.org/10.1021/acs.bioconjchem.5b00223

    Article  CAS  PubMed  Google Scholar 

  60. Govindan SV, Cardillo TM, Sharkey RM et al (2013) Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers. Mol Cancer Ther 12:968–978. https://doi.org/10.1158/1535-7163.mct-12-1170

    Article  PubMed  CAS  Google Scholar 

  61. Sharkey RM, Govindan SV, Cardillo TM, Goldenberg DM (2012) Epratuzumab-SN-38: a new antibody-drug conjugate for the therapy of hematologic malignancies. Mol Cancer Ther 11:224–234. https://doi.org/10.1158/1535-7163.mct-11-0632

    Article  PubMed  CAS  Google Scholar 

  62. Cardillo TM, Govindan SV, Sharkey RM et al (2011) Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer Xenograft models and monkeys. Clin Cancer Res 17:3157–3169. https://doi.org/10.1158/1078-0432.ccr-10-2939

    Article  CAS  PubMed  Google Scholar 

  63. Starodub AN, Ocean AJ, Shah MA et al (2015) First-in-human trial of a novel anti-trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res 21:3870–3878. https://doi.org/10.1158/1078-0432.CCR-14-3321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Yu SF, Zheng B, Go M et al (2015) A novel anti-CD22 anthracycline-based antibody-drug conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin Cancer Res 21:3298–3306. https://doi.org/10.1158/1078-0432.CCR-14-2035

    Article  PubMed  CAS  Google Scholar 

  65. Stefan N, Gébleux R, Waldmeier L et al (2017) Highly potent, Anthracycline-based antibody-drug conjugates generated by enzymatic, site-specific conjugation. Mol Cancer Ther 16:879–892. https://doi.org/10.1158/1535-7163.MCT-16-0688

    Article  PubMed  CAS  Google Scholar 

  66. Hennessy EJ (2016) Selective inhibitors of Bcl-2 and Bcl-xL: balancing antitumor activity with on-target toxicity. Bioorg Med Chem Lett 26:2105–2114. https://doi.org/10.1016/j.bmcl.2016.03.032

    Article  PubMed  CAS  Google Scholar 

  67. Tao Z-F, Doherty G, Wang X, et al (2016) Preparation of Bcl-xL inhibitory compounds having low cell permeability and antibody drug conjugates containing them. WO2016094509 A1

    Google Scholar 

  68. Ackler SL, Bennett NB, Boghaert ER, et al (2016) Bcl-xl inhibitory compounds and antibody drug conjugates including the same. US20160158377A1

    Google Scholar 

  69. He H, Ratnayake AS, Janso JE et al (2014) Cytotoxic spliceostatins from Burkholderia sp. and their semisynthetic analogs. J Nat Prod 77:1864–1870. https://doi.org/10.1021/np500342m

    Article  PubMed  CAS  Google Scholar 

  70. Moldenhauer G, Salnikov AV, Lüttgau S et al (2012) Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Natl Cancer Inst 104:622–634. https://doi.org/10.1093/jnci/djs140

    Article  CAS  PubMed  Google Scholar 

  71. Grunewald J, Jin Y, Ou W, Uno T (2016) Preparation of amatoxin derivatives and their immunoconjugates as inhibitors of RNA polymerase for treating cell proliferative disorders. WO2016071856 A1

    Google Scholar 

  72. Mendelsohn BA, Moon SJ (2013) Amatoxin derivatives and cell-permeable conjugates thereof as inhibitors of rna polymerase. WO2014043403 A1

    Google Scholar 

  73. Muller C, Anderl J, Simon W, et al (2014) Amatoxin derivatives. WO/2014/135282

    Google Scholar 

  74. Lerchen H-G, Wittrock S, Cancho Grande Y, et al (2016) Preparation of antibody-drug conjugates (ADCS) of KSP inhibitors with aglycosylated anti-TWEAKR antibodies. WO2016096610 A1

    Google Scholar 

  75. Marshall DJ, Harried SS, Murphy JL et al (2016) Extracellular antibody drug conjugates exploiting the proximity of two proteins. Mol Ther 24:1760–1770. https://doi.org/10.1038/mt.2016.119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Graversen JH, Svendsen P, Dagnæs-Hansen F et al (2012) Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone. Mol Ther 20:1550–1558. https://doi.org/10.1038/mt.2012.103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Granfeldt A, Hvas CL, Graversen JH et al (2013) Targeting dexamethasone to macrophages in a porcine endotoxemic model. Crit Care Med 41:e309–e318. https://doi.org/10.1097/CCM.0b013e31828a45ef

    Article  PubMed  CAS  Google Scholar 

  78. Thomsen KL, Møller HJ, Graversen JH et al (2016) Anti-CD163-dexamethasone conjugate inhibits the acute phase response to lipopolysaccharide in rats. World J Hepatol 8:726–730. https://doi.org/10.4254/wjh.v8.i17.726

    Article  PubMed  PubMed Central  Google Scholar 

  79. Moller LN, Knudsen AR, Andersen KJ et al (2015) Anti-CD163-dexamethasone protects against apoptosis after ischemia/reperfusion injuries in the rat liver. Ann Med Surg 4:331–337. https://doi.org/10.1016/j.amsu.2015.09.001

    Article  Google Scholar 

  80. Kern JC, Cancilla M, Dooney D et al (2016) Discovery of pyrophosphate Diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody-drug conjugates. J Am Chem Soc 138:1430–1445. https://doi.org/10.1021/jacs.5b12547

    Article  PubMed  CAS  Google Scholar 

  81. Kern JC, Dooney D, Zhang R et al (2016) Novel phosphate modified Cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug Chem 27:2081–2088. https://doi.org/10.1021/acs.bioconjchem.6b00337

    Article  PubMed  CAS  Google Scholar 

  82. Wang RE, Liu T, Wang Y et al (2015) An immunosuppressive antibody-drug conjugate. J Am Chem Soc 137:3229–3232. https://doi.org/10.1021/jacs.5b00620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lim RKV, Yu S, Cheng B et al (2015) Targeted delivery of LXR agonist using a site-specific antibody-drug conjugate. Bioconjug Chem 26:2216–2222. https://doi.org/10.1021/acs.bioconjchem.5b00203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lehar SM, Pillow T, Xu M et al (2015) Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 527:323–328. https://doi.org/10.1038/nature16057

    Article  PubMed  CAS  Google Scholar 

  85. Sugo T, Terada M, Oikawa T et al (2016) Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Control Release 237:1–13. https://doi.org/10.1016/j.jconrel.2016.06.036

    Article  PubMed  CAS  Google Scholar 

  86. Cuellar TL, Barnes D, Nelson C et al (2015) Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates. Nucleic Acids Res 43:1189–1203. https://doi.org/10.1093/nar/gku1362

    Article  PubMed  CAS  Google Scholar 

  87. Chari RVJ (2016) Expanding the reach of antibody-drug conjugates. ACS Med Chem Lett 7:974–976. https://doi.org/10.1021/acsmedchemlett.6b00312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Nathan Tumey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tumey, L.N. (2018). Next Generation Payloads for ADCs. In: Damelin, M. (eds) Innovations for Next-Generation Antibody-Drug Conjugates. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-78154-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78154-9_8

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-78153-2

  • Online ISBN: 978-3-319-78154-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics