Skip to main content

Utility of PK-PD Modeling and Simulation to Improve Decision Making for Antibody-Drug Conjugate Development

  • Chapter
  • First Online:

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Comprehension of the pharmacokinetics (PK) and pharmacodynamics (PD) of Antibody-drug Conjugates (ADCs) can be challenging as it requires integration of the information stemming from various moieties (i.e. the antibody, the drug, and the conjugate). Computational modeling provides an excellent tool to overcome these challenges by providing an opportunity to integrate all the available information within a mathematical framework. With an ever-increasing pipeline of more than 60 ADC molecules currently in the clinic, plenty of resources and time are invested towards discerning some key questions associated with PK, efficacy, and toxicity of the most promising candidates. In order to streamline the process of finding the answers to these questions and to expedite the development of ADCs, mathematical modeling and simulation (M&S) can be employed at different stages of ADC development. Successful application of this tool can not only enhance the scientific understanding of the processes underlying PK-PD of ADCs but can also provide comprehensive model-derived outcomes that can help accelerate the decision-making process. Within this book chapter, we have discussed an array of different PK-PD models and modeling strategies that could be employed at discovery, preclinical, or clinical stages, to make rational decisions for the development of ADCs. In addition, suitable examples from the literature are discussed where M&S has been utilized to make key go/no-go decisions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kimko H, Pinheiro J (2015) Model-based clinical drug development in the past, present and future: a commentary. Br J Clin Pharmacol 79(1):108–116

    Article  Google Scholar 

  2. Seruga B, Ocana A, Amir E, Tannock IF (2015) Failures in phase III: causes and consequences. Clin Cancer Res 21(20):4552–4560

    Article  CAS  PubMed  Google Scholar 

  3. Singh AP, Shah DK (2017) Application of a PK-PD modeling and simulation-based strategy for clinical translation of antibody-drug conjugates: a case study with Trastuzumab Emtansine (T-DM1). AAPS J 19(4):1054–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kamath AV, Iyer S (2015) Preclinical pharmacokinetic considerations for the development of antibody drug conjugates. Pharm Res 32(11):3470–3479

    Article  CAS  PubMed  Google Scholar 

  5. Lin K, Tibbitts J (2012) Pharmacokinetic considerations for antibody drug conjugates. Pharm Res 29(9):2354–2366

    Article  CAS  PubMed  Google Scholar 

  6. Sapra P, Betts A, Boni J (2013) Preclinical and clinical pharmacokinetic/pharmacodynamic considerations for antibody-drug conjugates. Expert Rev Clin Pharmacol 6(5):541–555

    Article  CAS  PubMed  Google Scholar 

  7. Behrens CR, Liu B (2014) Methods for site-specific drug conjugation to antibodies. MAbs 6(1):46–53

    Article  PubMed  Google Scholar 

  8. Singh AP, Shin YG, Shah DK (2015) Application of pharmacokinetic-pharmacodynamic modeling and simulation for antibody-drug conjugate development. Pharm Res 32(11):3508–3525

    Article  CAS  PubMed  Google Scholar 

  9. Singh AP, Shah DK (2017) Measurement and mathematical characterization of cell-level pharmacokinetics of antibody-drug conjugates: a case study with Trastuzumab-vc-MMAE. Drug Metab Dispos 45(11):1120–1132

    Article  CAS  PubMed  Google Scholar 

  10. Khot A, Sharma S, Shah DK (2015) Integration of bioanalytical measurements using PK-PD modeling and simulation: implications for antibody-drug conjugate development. Bioanalysis 7(13):1633–1648

    Article  CAS  PubMed  Google Scholar 

  11. Shah DK, Barletta F, Betts A, Hansel S (2013) Key bioanalytical measurements for antibody-drug conjugate development: PK/PD modelers’ perspective. Bioanalysis 5(9):989–992

    Article  CAS  PubMed  Google Scholar 

  12. Shah DK, Haddish-Berhane N, Betts A (2012) Bench to bedside translation of antibody drug conjugates using a multiscale mechanistic PK/PD model: a case study with brentuximab-vedotin. J Pharmacokinet Pharmacodyn 39(6):643–659

    Article  PubMed  Google Scholar 

  13. Chudasama VL, Schaedeli Stark F, Harrold JM, Tibbitts J, Girish SR, Gupta M et al (2012) Semi-mechanistic population pharmacokinetic model of multivalent trastuzumab emtansine in patients with metastatic breast cancer. Clin Pharmacol Ther 92(4):520–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu D, Jin JY, Girish S, Agarwal P, Li D, Prabhu S et al (2015) Semi-mechanistic multiple-analyte pharmacokinetic model for an antibody-drug-conjugate in cynomolgus monkeys. Pharm Res 32(6):1907–1919

    Article  CAS  PubMed  Google Scholar 

  15. Betts AM, Haddish-Berhane N, Tolsma J, Jasper P, King LE, Sun Y et al (2016) Preclinical to clinical translation of antibody-drug conjugates using PK/PD modeling: a retrospective analysis of inotuzumab ozogamicin. AAPS J 18(5):1101–1116

    Article  CAS  PubMed  Google Scholar 

  16. Workgroup EM, Marshall SF, Burghaus R, Cosson V, Cheung SY, Chenel M et al (2016) Good practices in model-informed drug discovery and development: practice, application, and documentation. CPT Pharmacometrics Syst Pharmacol 5(3):93–122

    Article  CAS  Google Scholar 

  17. Baumann A (2008) Preclinical development of therapeutic biologics. Exp Opin Drug Discov 3(3):289–297

    Article  Google Scholar 

  18. Singh AP, Maass KF, Betts AM, Wittrup KD, Kulkarni C, King LE et al (2016) Evolution of antibody-drug conjugate tumor disposition model to predict preclinical tumor pharmacokinetics of trastuzumab-emtansine (T-DM1). AAPS J 18(4):861–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Singh AP, Sharma S, Shah DK (2016) Quantitative characterization of in vitro bystander effect of antibody-drug conjugates. J Pharmacokinet Pharmacodyn 43(6):567–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shah DK, King LE, Han X, Wentland JA, Zhang Y, Lucas J et al (2014) A priori prediction of tumor payload concentrations: preclinical case study with an auristatin-based anti-5T4 antibody-drug conjugate. AAPS J 16(3):452–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khot A, Tibbitts J, Rock D, Shah DK (2017) Development of a translational physiologically based pharmacokinetic model for antibody-drug conjugates: a case study with T-DM1. AAPS J 19(6):1715–1734. doi: 10.1208/s12248-017-0131-3

    Article  PubMed  CAS  Google Scholar 

  22. Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39(1):67–86

    Article  CAS  PubMed  Google Scholar 

  23. Haddish-Berhane N, Shah DK, Ma D, Leal M, Gerber HP, Sapra P et al (2013) On translation of antibody drug conjugates efficacy from mouse experimental tumors to the clinic: a PK/PD approach. J Pharmacokinet Pharmacodyn 40(5):557–571

    Article  CAS  PubMed  Google Scholar 

  24. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20(24):4713–4721

    Article  PubMed  Google Scholar 

  25. Tatipalli MDH (2012) Semi-physiological population PK/PD model of ADC neutropenia. University of Florida, Gainesville

    Google Scholar 

  26. Ait-Oudhia S, Zhang W, Mager DEA (2017) Mechanism-based PK/PD model for hematological toxicities induced by antibody-drug conjugates. AAPS J 19(5):1436–1448. doi: 10.1208/s12248-017-0113-5

    Article  PubMed  CAS  Google Scholar 

  27. Bender BC, Schaedeli-Stark F, Koch R, Joshi A, Chu YW, Rugo H et al (2012) A population pharmacokinetic/pharmacodynamic model of thrombocytopenia characterizing the effect of trastuzumab emtansine (T-DM1) on platelet counts in patients with HER2-positive metastatic breast cancer. Cancer Chemother Pharmacol 70(4):591–601

    Article  CAS  PubMed  Google Scholar 

  28. Sadekar S, Figueroa I, Tabrizi M (2015) Antibody drug conjugates: application of quantitative pharmacology in modality design and target selection. AAPS J 17(4):828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maass KF, Kulkarni C, Betts AM, Wittrup KD (2016) Determination of cellular processing rates for a trastuzumab-maytansinoid antibody-drug conjugate (ADC) highlights key parameters for ADC design. AAPS J 18(3):635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maass KF, Kulkarni C, Quadir MA, Hammond PT, Betts AM, Wittrup KDA (2015) Flow cytometric clonogenic assay reveals the single-cell potency of doxorubicin. J Pharm Sci 104(12):4409–4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bender B, Leipold DD, Xu K, Shen BQ, Tibbitts J, Friberg LEA (2014) mechanistic pharmacokinetic model elucidating the disposition of trastuzumab emtansine (T-DM1), an antibody-drug conjugate (ADC) for treatment of metastatic breast cancer. AAPS J 16(5):994–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sukumaran S, Gadkar K, Zhang C, Bhakta S, Liu L, Xu K et al (2015) Mechanism-based pharmacokinetic/pharmacodynamic model for THIOMAB drug conjugates. Pharm Res 32(6):1884–1893

    Article  CAS  PubMed  Google Scholar 

  33. Zhao B ZS, Alley SC (2011) Physiologically-based pharmacokinetic modeling of an anti-CD70 auristatin antibody-drug conjugate in tumor-bearing mice. In: American conference on pharmacometrics (ACoP), San Diego

    Google Scholar 

  34. Chen Y, Samineni D, Mukadam S, Wong H, Shen BQ, Lu D et al (2015) Physiologically based pharmacokinetic modeling as a tool to predict drug interactions for antibody-drug conjugates. Clin Pharmacokinet 54(1):81–93

    Article  CAS  PubMed  Google Scholar 

  35. Cilliers C, Guo H, Liao J, Christodolu N, Thurber GM (2016) Multiscale modeling of antibody-drug conjugates: connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy. AAPS J 18(5):1117–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferl GZ, AM W, JJ DS 3rd (2005) A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33(11):1640–1652

    Article  PubMed  Google Scholar 

  37. Jumbe NL, Xin Y, Leipold DD, Crocker L, Dugger D, Mai E et al (2010) Modeling the efficacy of trastuzumab-DM1, an antibody drug conjugate, in mice. J Pharmacokinet Pharmacodyn 37(3):221–242

    Article  CAS  PubMed  Google Scholar 

  38. Donaghy H (2016) Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 8(4):659–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bender BC, Schindler E, Friberg LE (2015) Population pharmacokinetic-pharmacodynamic modelling in oncology: a tool for predicting clinical response. Br J Clin Pharmacol 79(1):56–71

    Article  CAS  PubMed  Google Scholar 

  40. Gupta M, Lorusso PM, Wang B, Yi JH, Burris HA 3rd, Beeram M et al (2012) Clinical implications of pathophysiological and demographic covariates on the population pharmacokinetics of trastuzumab emtansine, a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer. J Clin Pharmacol 52(5):691–703

    Article  CAS  PubMed  Google Scholar 

  41. Lu D, Joshi A, Wang B, Olsen S, Yi JH, Krop IE et al (2013) An integrated multiple-analyte pharmacokinetic model to characterize trastuzumab emtansine (T-DM1) clearance pathways and to evaluate reduced pharmacokinetic sampling in patients with HER2-positive metastatic breast cancer. Clin Pharmacokinet 52(8):657–672

    Article  CAS  PubMed  Google Scholar 

  42. Lu D, Gibiansky L, Agarwal P, Dere RC, Li C, Chu YW et al (2016) Integrated two-analyte population pharmacokinetic model for antibody-drug conjugates in patients: implications for reducing pharmacokinetic sampling. CPT Pharmacometrics Syst Pharmacol 5(12):665–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kagedal M, Gibiansky L, Xu J, Wang X, Samineni D, Chen SC et al (2017) Platform model describing pharmacokinetic properties of vc-MMAE antibody-drug conjugates. J Pharmacokinet Pharmacodyn 44(6):537–548. doi: 10.1007/s10928-017-9544-y

    Article  PubMed  CAS  Google Scholar 

  44. Luu KVE, Volkert A, Ogura M, Goy G, Boni J (2012) Antitumor response to inotuzumab ozogamicin (INO) in patients with refractory or relapsed indolent B-cell non-Hodgkin’ s l ymphomas (NHL): pharmacokinetic-pharmacodynamic (PK-PD) modeling and interim results from a phase II study. In: AACR 103rd annual meeting, Chicago

    Google Scholar 

  45. Li C, Wang B, Chen SC, Wada R, Lu D, Wang X et al (2017) Exposure-response analyses of trastuzumab emtansine in patients with HER2-positive advanced breast cancer previously treated with trastuzumab and a taxane. Cancer Chemother Pharmacol 80(6):1079–1090. doi: 10.1007/s00280-017-3440-4

    Article  PubMed  CAS  Google Scholar 

  46. Mugundu GVE, Boni J (2012) Use of pharmacokineticpharmacodynamic modeling to characterize platelet response following inotuzumab ozogamicin treatment in patients with follicular or diffuse large B-cell non-Hodgkin’s lymphoma. In: AACR 103rd annual meeting, Chicago

    Google Scholar 

  47. Li CLD, Samineni D, Kaagedal M, Chen C, Jin J, Girish S (eds) (2017) PK/PD modeling strategy to support the development of antibody drug conjugates. In: AAPS national biotechnology conference, San Diego

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant GM114179 to D.K.S., and the Centre for Protein Therapeutics at the State University of New York at Buffalo. Authors would also like to thank Dr. Amrita V. Kamath (Genentech®, Inc) for her helpful discussion while conception of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhaval K. Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.P., Shah, D.K. (2018). Utility of PK-PD Modeling and Simulation to Improve Decision Making for Antibody-Drug Conjugate Development. In: Damelin, M. (eds) Innovations for Next-Generation Antibody-Drug Conjugates. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-78154-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78154-9_4

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-78153-2

  • Online ISBN: 978-3-319-78154-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics