Immunosuppression by Intestinal Stromal Cells

  • Iryna V. Pinchuk
  • Don W. PowellEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1060)


This chapter summarizes evidence that intestinal myofibroblasts, also called intestinal stromal cells, are derived in the adult from tissue mesenchymal stem cells under homeostasis and may be replenished by bone marrow mesenchymal stromal (stem) cells that are recruited after severe intestinal injury. A comparison of mechanism of immunosuppression or tolerance by adult intestinal stromal cells (myofibroblasts) is almost identical with those reported for mesenchymal stem cells of bone marrow origin. The list of suppression mechanisms includes PD-L1 and PD-L2/PD-1 immune checkpoint pathways, soluble mediator secretion, toll-like receptor-mediated tolerance, and augmentation of Treg cells. Further, both mesenchymal stem cells and intestinal stromal cells express an almost identical repertoire of CD molecules. Lastly, others have reported that isolate intestinal stromal cells are capable of differentiating into bone and less well into chondrocyte, but not into adipocytes, a finding that we have confirmed. These findings suggest that intestinal stromal cells (myofibroblasts) are partially differentiated adult, tissue-resident stem cells which are capable of exerting immune tolerance in the intestine. Their role in repair of inflammatory bowel disease and immune suppression in colorectal cancer needs further investigation.


Mesenchymal stem cells Tissue-resident adult mesenchymal stem cells Myofibroblasts Immune tolerance PD-L1 PD-L2 Toll-like receptors Inflammatory bowel disease Colorectal cancer 


  1. 1.
    Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Phys. 1999;277:C1–9.CrossRefGoogle Scholar
  2. 2.
    Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am J Phys. 1999;277:C183–201.CrossRefGoogle Scholar
  3. 3.
    Furuya S, Furuya K. Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. Int Rev Cytol. 2007;264:165–223.CrossRefPubMedGoogle Scholar
  4. 4.
    De Wever O, Demetter P, Mareel M, Bracke M. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer. 2008;123:2229–38.CrossRefPubMedGoogle Scholar
  5. 5.
    Powell DW, Pinchuk IV, Saada JI, Chen X, Mifflin RC. Mesenchymal cells of the intestinal lamina propria. Annu Rev Physiol. 2011;73:213–37.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mifflin RC, Pinchuk IV, Saada JI, Powell DW. Intestinal myofibroblasts: targets for stem cell therapy. Am J Physiol Gastrointest Liver Physiol. 2011;300:G684–96.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Owens BM, Simmons A. Intestinal stromal cells in mucosal immunity and homeostasis. Mucosal Immunol. 2013;6:224–34.CrossRefPubMedGoogle Scholar
  8. 8.
    Brahmer JR, Hammers H, Lipson EJ. Nivolumab: targeting PD-1 to bolster antitumor immunity. Future Oncol. 2015;11:1307–26.CrossRefPubMedGoogle Scholar
  9. 9.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lipson EJ, Sharfman WH, Drake CG, Wollner I, Taube JM, Anders RA, Xu H, Yao S, Pons A, Chen L, Pardoll DM, Brahmer JR, Topalian SL. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res. 2013;19:462–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Saada JI, Pinchuk IV, Barrera CA, Adegboyega PA, Suarez G, Mifflin RC, Di Mari JF, Reyes VE, Powell DW. Subepithelial myofibroblasts are novel nonprofessional APCs in the human colonic mucosa. J Immunol. 2006;177:5968–79.CrossRefPubMedGoogle Scholar
  12. 12.
    Pinchuk IV, Beswick EJ, Saada JI, Suarez G, Winston J, Mifflin RC, Di Mari JF, Powell DW, Reyes VE. Monocyte chemoattractant protein-1 production by intestinal myofibroblasts in response to staphylococcal enterotoxin a: relevance to staphylococcal enterotoxigenic disease. J Immunol. 2007;178:8097–106.CrossRefPubMedGoogle Scholar
  13. 13.
    Pinchuk IV, Morris KT, Nofchissey RA, Earley RB, Wu JY, Ma TY, Beswick EJ. Stromal cells induce Th17 during Helicobacter pylori infection and in the gastric tumor microenvironment. PLoS One. 2013;8:e53798.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pinchuk IV, Saada JI, Beswick EJ, Boya G, Qiu SM, Mifflin RC, Raju GS, Reyes VE, Powell DW. PD-1 ligand expression by human colonic myofibroblasts/fibroblasts regulates CD4+ T-cell activity. Gastroenterology. 2008;135:1228–37.Google Scholar
  15. 15.
    Jones S, Horwood N, Cope A, Dazzi F. The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol. 2007;179:2824–31.CrossRefPubMedGoogle Scholar
  16. 16.
    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–22.CrossRefPubMedGoogle Scholar
  17. 17.
    Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6:457–78.CrossRefPubMedGoogle Scholar
  18. 18.
    Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013;13:392–402.CrossRefPubMedGoogle Scholar
  19. 19.
    Joseph NM, Mukouyama YS, Mosher JT, Jaegle M, Crone SA, Dormand EL, Lee KF, Meijer D, Anderson DJ, Morrison SJ. Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development. 2004;131:5599–612.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wilm B, Ipenberg A, Hastie ND, Burch JB, Bader DM. The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development. 2005;132:5317–28.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rinkevich Y, Mori T, Sahoo D, Xu PX, Bermingham JR Jr, Weissman IL. Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nat Cell Biol. 2012;14:1251–60.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Powell DW, Saada JI. Mesenchymal stem cells and prostaglandins may be critical for intestinal wound repair. Gastroenterology. 2012;143:19–22.CrossRefPubMedGoogle Scholar
  23. 23.
    Brown SL, Riehl TE, Walker MR, Geske MJ, Doherty JM, Stenson WF, Stappenbeck TS. Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J Clin Invest. 2007;117:258–69.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, Levin D, Schwartz MG, Uygur A, Hayakawa Y, Gross S, Renz BW, Setlik W, Martinez AN, Chen X, Nizami S, Lee HG, Kang HP, Caldwell JM, Asfaha S, Westphalen CB, Graham T, Jin G, Nagar K, Wang H, Kheirbek MA, Kolhe A, Carpenter J, Glaire M, Nair A, Renders S, Manieri N, Muthupalani S, Fox JG, Reichert M, Giraud AS, Schwabe RF, Pradere JP, Walton K, Prakash A, Gumucio D, Rustgi AK, Stappenbeck TS, Friedman RA, Gershon MD, Sims P, Grikscheit T, Lee FY, Karsenty G, Mukherjee S, Wang TC. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell. 2015;160:269–84.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Brittan M, Chance V, Elia G, Poulsom R, Alison MR, MacDonald TT, Wright NA. A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts. Gastroenterology. 2005;128:1984–95.CrossRefPubMedGoogle Scholar
  26. 26.
    Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, Friedman R, Varro A, Tycko B, Wang TC. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19:257–72.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Worthley DL, Si Y, Quante M, Churchill M, Mukherjee S, Wang TC. Bone marrow cells as precursors of the tumor stroma. Exp Cell Res. 2013;319:1650–6.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Signore M, Cerio AM, Boe A, Pagliuca A, Zaottini V, Schiavoni I, Fedele G, Petti S, Navarra S, Ausiello CM, Pelosi E, Fatica A, Sorrentino A, Valtieri M. Identity and ranking of colonic mesenchymal stromal cells. J Cell Physiol. 2012;227:3291–300.CrossRefPubMedGoogle Scholar
  29. 29.
    Tirapu I, Huarte E, Guiducci C, Arina A, Zaratiegui M, Murillo O, Gonzalez A, Berasain C, Berraondo P, Fortes P, Prieto J, Colombo MP, Chen L, Melero I. Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma. Cancer Res. 2006;66:2442–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Seliger B, Marincola FM, Ferrone S, Abken H. The complex role of B7 molecules in tumor immunology. Trends Mol Med. 2008;14:550–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Romo-Tena J, Gomez-Martin D, Alcocer-Varela J. CTLA-4 and autoimmunity: new insights into the dual regulator of tolerance. Autoimmun Rev. 2013;12:1171–6.CrossRefPubMedGoogle Scholar
  32. 32.
    English K, Barry FP, Field-Corbett CP, Mahon BP. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett. 2007;110:91–100.CrossRefPubMedGoogle Scholar
  33. 33.
    Jang IK, Yoon HH, Yang MS, Lee JE, Lee DH, Lee MW, Kim DS, Park JE. B7-H1 inhibits T cell proliferation through MHC class II in human mesenchymal stem cells. Transplant Proc. 2014;46:1638–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol. 2004;4:336–47.CrossRefPubMedGoogle Scholar
  35. 35.
    Luz-Crawford P, Noel D, Fernandez X, Khoury M, Figueroa F, Carrion F, Jorgensen C, Djouad F. Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS One. 2012;7:e45272.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, Selig M, Godwin J, Law K, Placidi C, Smith RN, Capella C, Rodig S, Adra CN, Atkinson M, Sayegh MH, Abdi R. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol. 2009;183:993–1004.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang H, Qi F, Dai X, Tian W, Liu T, Han H, Zhang B, Li H, Zhang Z, Du C. Requirement of B7-H1 in mesenchymal stem cells for immune tolerance to cardiac allografts in combination therapy with rapamycin. Transpl Immunol. 2014;31:65–74.CrossRefPubMedGoogle Scholar
  38. 38.
    Dulos J, Carven GJ, van Boxtel SJ, Evers S, Driessen-Engels LJ, Hobo W, Gorecka MA, de Haan AF, Mulders P, Punt CJ, Jacobs JF, Schalken JA, Oosterwijk E, van Eenennaam H, Boots AM. PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer. J Immunother. 2012;35:169–78.CrossRefGoogle Scholar
  39. 39.
    Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206:3015–29.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cao W, Cao K, Cao J, Wang Y, Shi Y. Mesenchymal stem cells and adaptive immune responses. Immunol Lett. 2015;pii: S0165-2478(15)00101-7. [Epub ahead of print].
  41. 41.
    Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noel D. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther. 2010;1–7.Google Scholar
  42. 42.
    Hoogduijn MJ, Popp F, Verbeek R, Masoodi M, Nicolaou A, Baan C, Dahlke MH. The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int Immunopharmacol. 2010;10:1496–500.CrossRefPubMedGoogle Scholar
  43. 43.
    Stagg J, Galipeau J. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. Curr Mol Med. 2013;13:856–67.CrossRefPubMedGoogle Scholar
  44. 44.
    Kim HS, Shin TH, Yang SR, Seo MS, Kim DJ, Kang SK, Park JH, Kang KS. Implication of NOD1 and NOD2 for the differentiation of multipotent mesenchymal stem cells derived from human umbilical cord blood. PLoS One. 2010;5:e15369.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wlodarska M, Kostic AD, Xavier RJ. An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe. 2015;17:577–91.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chen X, Zhang ZY, Zhou H, Zhou GW. Characterization of mesenchymal stem cells under the stimulation of Toll-like receptor agonists. Develop Growth Differ. 2014;56:233–44.CrossRefGoogle Scholar
  47. 47.
    Ishikura H, Dorf ME. Thymic stromal cells induce hapten-specific, genetically restricted effector suppressor cells in vivo. Immunobiology. 1990;182:11–21.CrossRefPubMedGoogle Scholar
  48. 48.
    Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101:3722–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Owens BM, Steevels TA, Dudek M, Walcott D, Sun MY, Mayer A, Allan P, Simmons A. CD90(+) stromal cells are non-professional innate immune effectors of the human colonic mucosa. Front Immunol. 2013;4:307.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pinchuk IV, Beswick EJ, Saada JI, Boya G, Schmitt D, Raju GS, Brenmoehl J, Rogler G, Reyes VE, Powell DW. Human colonic myofibroblasts promote expansion of CD4(+) CD25(high) Foxp3(+) regulatory T cells. Gastroenterology. 2011;79:2737–45.Google Scholar
  51. 51.
    Lohr J, Knoechel B, Jiang S, Sharpe AH, Abbas AK. The inhibitory function of B7 costimulators in T cell responses to foreign and self-antigens. Nat Immunol. 2003;4:664–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol. 2005;6:280–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Alvarez IB, Pasquinelli V, Jurado JO, Abbate E, Musella RM, de la Barrera SS, Garcia VE. Role played by the programmed death-1-programmed death ligand pathway during innate immunity against Mycobacterium tuberculosis. J Infect Dis. 2010;202:524–32.CrossRefPubMedGoogle Scholar
  54. 54.
    Chang KC, Burnham CA, Compton SM, Rasche DP, Mazuski RJ, McDonough JS, Unsinger J, Korman AJ, Green JM, Hotchkiss RS. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis. Crit Care. 2013;17:R85.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Liang SC, Greenwald RJ, Latchman YE, Rosas L, Satoskar A, Freeman GJ, Sharpe AH. PD-L1 and PD-L2 have distinct roles in regulating host immunity to cutaneous leishmaniasis. Eur J Immunol. 2006;36:58–64.CrossRefPubMedGoogle Scholar
  56. 56.
    McAlees JW, Lajoie S, Dienger K, Sproles AA, Richgels PK, Yang Y, Khodoun M, Azuma M, Yagita H, Fulkerson PC, Wills-Karp M, Lewkowich IP. Differential control of CD4(+) T-cell subsets by the PD-1/PD-L1 axis in a mouse model of allergic asthma. Eur J Immunol. 2015;45:1019–29.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Beswick EJ, Johnson JR, Saada JI, Humen M, House J, Dann S, Qiu S, Brasier AR, Powell DW, Reyes VE, Pinchuk IV. TLR4 activation enhances the PD-L1-mediated tolerogenic capacity of colonic CD90+ stromal cells. J Immunol. 2014;193:2218–29.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ferdinande L, Demetter P, Perez-Novo C, Waeytens A, Taildeman J, Rottiers I, Rottiers P, De Vos M, Cuvelier CA. Inflamed intestinal mucosa features a specific epithelial expression pattern of indoleamine 2,3-dioxygenase. Int J Immunopathol Pharmacol. 2008;21:289–95.CrossRefPubMedGoogle Scholar
  59. 59.
    Ina K, Kusugami K, Kawano Y, Nishiwaki T, Wen ZH, Musso A, West GA, Ohta M, Goto H, Fiocchi C. Intestinal fibroblast-derived IL-10 increases survival of mucosal T cells by inhibiting growth factor deprivation- and fas-mediated apoptosis. J Immunol. 2005;175:2000–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Allez M, Mayer L. Regulatory T cells: peace keepers in the gut. Inflamm Bowel Dis. 2004;10:666–76.CrossRefPubMedGoogle Scholar
  61. 61.
    Wang S, Charbonnier LM, Noval Rivas M, Georgiev P, Li N, Gerber G, Bry L, Chatila TA. MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity. 2015;43:289–303.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Otte JM, Rosenberg IM, Podolsky DK. Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology. 2003;124:1866–78.CrossRefPubMedGoogle Scholar
  63. 63.
    Deguine J, Barton GM. MyD88: a central player in innate immune signaling. F1000Prime Rep. 2014;6:97.Google Scholar
  64. 64.
    Owens BM. Inflammation, innate immunity, and the intestinal stromal cell niche: opportunities and challenges. Front Immunol. 2015;6:319.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Rieder F, Fiocchi C. Intestinal fibrosis in inflammatory bowel disease: progress in basic and clinical science. Curr Opin Gastroenterol. 2008;24:462–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Dumas F, Preira P, Salome L. Membrane organization of virus and target cell plays a role in HIV entry. Biochimie. 2014;107(Pt A):22–7.CrossRefPubMedGoogle Scholar
  67. 67.
    Maguer-Satta V, Besancon R, Bachelard-Cascales E. Concise review: neutral endopeptidase (CD10): a multifaceted environment actor in stem cells, physiological mechanisms, and cancer. Stem Cells. 2011;29:389–96.CrossRefPubMedGoogle Scholar
  68. 68.
    Zhou H, Liao J, Aloor J, Nie H, Wilson BC, Fessler MB, Gao HM, Hong JS. CD11b/CD18 (Mac-1) is a novel surface receptor for extracellular double-stranded RNA to mediate cellular inflammatory responses. J Immunol. 2013;190:115–25.CrossRefPubMedGoogle Scholar
  69. 69.
    Flaherty SF, Golenbock DT, Milham FH, Ingalls RR. CD11/CD18 leukocyte integrins: new signaling receptors for bacterial endotoxin. J Surg Res. 1997;73:85–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Mina-Osorio P. The moonlighting enzyme CD13: old and new functions to target. Trends Mol Med. 2008;14:361–71.CrossRefPubMedGoogle Scholar
  71. 71.
    Yang H, Li J, Wang Y, Hu Q. Effects of CD14 and TLR4 on LPS-mediated normal human skin fibroblast proliferation. Int J Clin Exp Med. 2015;8:2267–72.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Lang M, Schlechtweg M, Kellermeier S, Brenmoehl J, Falk W, Scholmerich J, Herfarth H, Rogler G, Hausmann M. Gene expression profiles of mucosal fibroblasts from strictured and nonstrictured areas of patients with Crohn’s disease. Inflamm Bowel Dis. 2009;15:212–23.CrossRefPubMedGoogle Scholar
  73. 73.
    Jaggupilli A, Elkord E. Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol. 2012;2012:708036.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Yeh YC, Lin HH, Tang MJ. A tale of two collagen receptors, integrin beta1 and discoidin domain receptor 1, in epithelial cell differentiation. Am J Physiol Cell Physiol. 2012;303:C1207–17.CrossRefPubMedGoogle Scholar
  75. 75.
    Marelli-Berg FM, Clement M, Mauro C, Caligiuri G. An immunologist’s guide to CD31 function in T-cells. J Cell Sci. 2013;126:2343–52.CrossRefPubMedGoogle Scholar
  76. 76.
    Nielsen JS, McNagny KM. Novel functions of the CD34 family. J Cell Sci. 2008;121:3683–92.CrossRefPubMedGoogle Scholar
  77. 77.
    Thiel N, Zischke J, Elbasani E, Kay-Fedorov P, Messerle M. Viral interference with functions of the cellular receptor tyrosine phosphatase CD45. Viruses. 2015;7:1540–57.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Gardner H. Integrin alpha1beta1. Adv Exp Med Biol. 2014;819:21–39.CrossRefPubMedGoogle Scholar
  79. 79.
    Subbaram S, Dipersio CM. Integrin alpha3beta1 as a breast cancer target. Expert Opin Ther Targets. 2011;15:1197–210.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Mitroulis I, Alexaki VI, Kourtzelis I, Ziogas A, Hajishengallis G, Chavakis T. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol Ther. 2015;147:123–35.CrossRefPubMedGoogle Scholar
  81. 81.
    Musso A, Condon TP, West GA, De La Motte C, Strong SA, Levine AD, Bennett CF, Fiocchi C. Regulation of ICAM-1-mediated fibroblast-T cell reciprocal interaction: implications for modulation of gut inflammation. Gastroenterology. 1999;117:546–56.CrossRefPubMedGoogle Scholar
  82. 82.
    Saalbach A, Wetzel A, Haustein UF, Sticherling M, Simon JC, Anderegg U. Interaction of human Thy-1 (CD 90) with the integrin alphavbeta3 (CD51/CD61): an important mechanism mediating melanoma cell adhesion to activated endothelium. Oncogene. 2005;24:4710–20.CrossRefPubMedGoogle Scholar
  83. 83.
    Nassiri F, Cusimano MD, Scheithauer BW, Rotondo F, Fazio A, Yousef GM, Syro LV, Kovacs K, Lloyd RV. Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res. 2011;31:2283–90.PubMedGoogle Scholar
  84. 84.
    Wang Z, Yan X. CD146, a multi-functional molecule beyond adhesion. Cancer Lett. 2013;330:150–62.CrossRefPubMedGoogle Scholar
  85. 85.
    Chappell PE, Garner LI, Yan J, Metcalfe C, Hatherley D, Johnson S, Robinson CV, Lea SM, Brown MH. Structures of CD6 and its ligand CD166 give insight into their interaction. Structure. 2015;23:1426–36.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Nakayama M. Antigen presentation by MHC-dressed cells. Front Immunol. 2014;5:672.PubMedGoogle Scholar
  87. 87.
    Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol. 2005;35:1482–90.CrossRefPubMedGoogle Scholar
  88. 88.
    Lina TT, Pinchuk IV, House J, Yamaoka Y, Graham DY, Beswick EJ, Reyes VE. CagA-dependent downregulation of B7-H2 expression on gastric mucosa and inhibition of Th17 responses during Helicobacter pylori infection. J Immunol. 2013;191:3838–46.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Adegboyega PA, Mifflin RC, DiMari JF, Saada JI, Powell DW. Immunohistochemical study of myofibroblasts in normal colonic mucosa, hyperplastic polyps, and adenomatous colorectal polyps. Arch Pathol Lab Med. 2002;126:829–36.PubMedGoogle Scholar
  90. 90.
    Dave JM, Bayless KJ. Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation. 2014;21:333–44.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departments of Internal MedicineUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonUSA
  3. 3.Neuroscience, Cell Biology and AnatomyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations