Stromal Cell Responses in Infection

  • Paul M. KayeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1060)


Stromal cells and the immune functions that they regulate underpin multiple aspects of host defence, but the study of stromal cells as targets of infection and as regulators of anti-infective immunity is in its infancy and still limited to a few well-worked examples. In this review, the role of stromal cells at each sequential stage of infection is discussed, with examples drawn from across the spectrum of infectious agents, from prions to the parasitic helminths. Gaps in knowledge are identified, the challenges in studying stromal cell biology in the context of infection are highlighted, and the potential for stromal cell-targeted therapeutics is briefly discussed.


Stromal infection Innate immunity TLOs Stromal architecture Stromal APCs Inflammation resolution 



The author thanks his numerous colleagues who have contributed to the study of stromal cell biology in his laboratory and the Medical Research Council and the Wellcome Trust for providing long-term research support. The author also apologizes to the many investigators whose work has been omitted for the sake of brevity but who have set the scene for future studies of the role of stromal cells in infection.


  1. 1.
    Donjacour AA, Cunha GR. Stromal regulation of epithelial function. Cancer Treat Res. 1991;53:335–64.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang X, Martinez D, Koledova Z, Qiao G, Streuli CH, Lu P. FGF ligands of the postnatal mammary stroma regulate distinct aspects of epithelial morphogenesis. Development. 2014;141(17):3352–62.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Espinosa-Cantellano M, Martinez-Palomo A. Pathogenesis of intestinal amebiasis: from molecules to disease. Clin Microbiol Rev. 2000;13(2):318–31.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Artis D, Grencis RK. The intestinal epithelium: sensors to effectors in nematode infection. Mucosal Immunol. 2008;1(4):252–64.CrossRefPubMedGoogle Scholar
  5. 5.
    Hiemstra IH, Klaver EJ, Vrijland K, Kringel H, Andreasen A, Bouma G, Kraal G, van Die I, den Haan JM. Excreted/secreted Trichuris suis products reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells. Mol Immunol. 2014;60(1):1–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Kaye P, Scott P. Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol. 2011;9(8):604–15.CrossRefPubMedGoogle Scholar
  7. 7.
    Barrias ES, de Carvalho TM, De Souza W. Trypanosoma cruzi: entry into mammalian host cells and parasitophorous vacuole formation. Front Immunol. 2013;4:186.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bogdan C, Donhauser N, Doring R, Rollinghoff M, Diefenbach A, Rittig MG. Fibroblasts as host cells in latent leishmaniosis. J Exp Med. 2000;191(12):2121–30.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Svensson M, Maroof A, Ato M, Kaye PM. Stromal cells direct local differentiation of regulatory dendritic cells. Immunity. 2004;21(6):805–16.CrossRefPubMedGoogle Scholar
  10. 10.
    Hsu KM, Pratt JR, Akers WJ, Achilefu SI, Yokoyama WM. Murine cytomegalovirus displays selective infection of cells within hours after systemic administration. J Gen Virol. 2009;90(Pt 1):33–43.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Baldwin J, Park PJ, Zanotti B, Maus E, Volin MV, Shukla D, Tiwari V. Susceptibility of human iris stromal cells to herpes simplex virus 1 entry. J Virol. 2013;87(7):4091–6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Valyi-Nagy T, Sheth V, Clement C, Tiwari V, Scanlan P, Kavouras JH, Leach L, Guzman-Hartman G, Dermody TS, Shukla D. Herpes simplex virus entry receptor nectin-1 is widely expressed in the murine eye. Curr Eye Res. 2004;29(4–5):303–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Keele BF, Tazi L, Gartner S, Liu Y, Burgon TB, Estes JD, Thacker TC, Crandall KA, McArthur JC, Burton GF. Characterization of the follicular dendritic cell reservoir of human immunodeficiency virus type 1. J Virol. 2008;82(11):5548–61.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Smith BA, Gartner S, Liu Y, Perelson AS, Stilianakis NI, Keele BF, Kerkering TM, Ferreira-Gonzalez A, Szakal AK, Tew JG, Burton GF. Persistence of infectious HIV on follicular dendritic cells. J Immunol. 2001;166(1):690–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Spiegel H, Herbst H, Niedobitek G, Foss HD, Stein H. Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4+ T-helper cells. Am J Pathol. 1992;140(1):15–22.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Thacker TC, Zhou X, Estes JD, Jiang Y, Keele BF, Elton TS, Burton GF. Follicular dendritic cells and human immunodeficiency virus type 1 transcription in CD4+ T cells. J Virol. 2009;83(1):150–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Baud J, Varon C, Chabas S, Chambonnier L, Darfeuille F, Staedel C. Helicobacter pylori initiates a mesenchymal transition through ZEB1 in gastric epithelial cells. PLoS One. 2013;8(4):e60315.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Reilkoff RA, Bucala R, Herzog EL. Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol. 2011;11(6):427–35.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Macedo-Silva RM, Santos Cde L, Diniz VA, Carvalho JJ, Guerra C, Corte-Real S. Peripheral blood fibrocytes: new information to explain the dynamics of Leishmania infection. Mem Inst Oswaldo Cruz. 2014;109(1):61–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Allahverdiyev AM, Bagirova M, Elcicek S, Koc RC, Baydar SY, Findikli N, Oztel ON. Adipose tissue-derived mesenchymal stem cells as a new host cell in latent leishmaniasis. Am J Trop Med Hyg. 2011;85(3):535–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schilling JD, Martin SM, Hung CS, Lorenz RG, Hultgren SJ. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc Natl Acad Sci U S A. 2003;100(7):4203–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Spanier J, Lienenklaus S, Paijo J, Kessler A, Borst K, Heindorf S, Baker DP, Kroger A, Weiss S, Detje CN, Staeheli P, Kalinke U. Concomitant TLR/RLH signaling of radioresistant and radiosensitive cells is essential for protection against vesicular stomatitis virus infection. J Immunol. 2014;193(6):3045–54.CrossRefPubMedGoogle Scholar
  23. 23.
    Tomalka J, Ganesan S, Azodi E, Patel K, Majmudar P, Hall BA, Fitzgerald KA, Hise AG. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog. 2011;7(12):e1002379.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schneider K, Loewendorf A, De Trez C, Fulton J, Rhode A, Shumway H, Ha S, Patterson G, Pfeffer K, Nedospasov SA, Ware CF, Benedict CA. Lymphotoxin-mediated crosstalk between B cells and splenic stroma promotes the initial type I interferon response to cytomegalovirus. Cell Host Microbe. 2008;3(2):67–76.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Verma S, Wang Q, Chodaczek G, Benedict CA. Lymphoid-tissue stromal cells coordinate innate defense to cytomegalovirus. J Virol. 2013;87(11):6201–10.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–62.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, Horwood N, Nanchahal J. Alarmins: awaiting a clinical response. J Clin Invest. 2012;122(8):2711–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald HR. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547–51.CrossRefPubMedGoogle Scholar
  29. 29.
    Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336(6077):86–90.CrossRefPubMedGoogle Scholar
  30. 30.
    Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38(1):79–91.CrossRefPubMedGoogle Scholar
  31. 31.
    Onder L, Narang P, Scandella E, Chai Q, Iolyeva M, Hoorweg K, Halin C, Richie E, Kaye P, Westermann J, Cupedo T, Coles M, Ludewig B. IL-7-producing stromal cells are critical for lymph node remodeling. Blood. 2012;120(24):4675–83.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cohen JN, Guidi CJ, Tewalt EF, Qiao H, Rouhani SJ, Ruddell A, Farr AG, Tung KS, Engelhard VH. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med. 2010;207(4):681–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fletcher AL, Lukacs-Kornek V, Reynoso ED, Pinner SE, Bellemare-Pelletier A, Curry MS, Collier AR, Boyd RL, Turley SJ. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J Exp Med. 2010;207(4):689–97.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Baptista AP, Roozendaal R, Reijmers RM, Koning JJ, Unger WW, Greuter M, Keuning ED, Molenaar R, Goverse G, Sneeboer MM, den Haan JM, Boes M, Mebius RE. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. eLife. 2014; 3:e04433Google Scholar
  35. 35.
    Dubrot J, Duraes FV, Potin L, Capotosti F, Brighouse D, Suter T, LeibundGut-Landmann S, Garbi N, Reith W, Swartz MA, Hugues S. Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD4(+) T cell tolerance. J Exp Med. 2014;211(6):1153–66.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Peduto L, Dulauroy S, Lochner M, Spath GF, Morales MA, Cumano A, Eberl G. Inflammation recapitulates the ontogeny of lymphoid stromal cells. J Immunol. 2009;182(9):5789–99.CrossRefPubMedGoogle Scholar
  37. 37.
    Despars G, Tan J, Periasamy P, O’Neill HC. The role of stroma in hematopoiesis and dendritic cell development. Curr Stem Cell Res Ther. 2007;2(1):23–9.CrossRefPubMedGoogle Scholar
  38. 38.
    O’Neill HC, Griffiths KL, Periasamy P, Hinton RA, Petvises S, Hey YY, Tan JK. Spleen stroma maintains progenitors and supports long-term hematopoiesis. Curr Stem Cell Res Ther. 2014;9(4):354–63.CrossRefPubMedGoogle Scholar
  39. 39.
    Tan JK, Periasamy P, O'Neill HC. Delineation of precursors in murine spleen that develop in contact with splenic endothelium to give novel dendritic-like cells. Blood. 2010;115(18):3678–85.CrossRefPubMedGoogle Scholar
  40. 40.
    Nguyen Hoang AT, Liu H, Juarez J, Aziz N, Kaye PM, Svensson M. Stromal cell-derived CXCL12 and CCL8 cooperate to support increased development of regulatory dendritic cells following Leishmania infection. J Immunol. 2010;185(4):2360–71.CrossRefPubMedGoogle Scholar
  41. 41.
    Li Q, Guo Z, Xu X, Xia S, Cao X. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation. Eur J Immunol. 2008;38(10):2751–61.CrossRefPubMedGoogle Scholar
  42. 42.
    Tang H, Guo Z, Zhang M, Wang J, Chen G, Cao X. Endothelial stroma programs hematopoietic stem cells to differentiate into regulatory dendritic cells through IL-10. Blood. 2006;108(4):1189–97.CrossRefPubMedGoogle Scholar
  43. 43.
    Xia S, Guo Z, Xu X, Yi H, Wang Q, Cao X. Hepatic microenvironment programs hematopoietic progenitor differentiation into regulatory dendritic cells, maintaining liver tolerance. Blood. 2008;112(8):3175–85.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Xu X, Yi H, Guo Z, Qian C, Xia S, Yao Y, Cao X. Splenic stroma-educated regulatory dendritic cells induce apoptosis of activated CD4 T cells via Fas ligand-enhanced IFN-gamma and nitric oxide. J Immunol. 2012;188(3):1168–77.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang M, Tang H, Guo Z, An H, Zhu X, Song W, Guo J, Huang X, Chen T, Wang J, Cao X. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol. 2004;5(11):1124–33.CrossRefPubMedGoogle Scholar
  46. 46.
    Li L, Liu S, Zhang T, Pan W, Yang X, Cao X. Splenic stromal microenvironment negatively regulates virus-activated plasmacytoid dendritic cells through TGF-beta. J Immunol. 2008;180(5):2951–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Hussaarts L, van der Vlugt LE, Yazdanbakhsh M, Smits HH. Regulatory B-cell induction by helminths: implications for allergic disease. J Allergy Clin Immunol. 2011;128(4):733–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Turner JD, Narang P, Coles MC, Mountford AP. Blood flukes exploit Peyer’s Patch lymphoid tissue to facilitate transmission from the mammalian host. PLoS Pathog. 2012;8(12):e1003063.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wood GS. The immunohistology of lymph nodes in HIV infection: a review. Prog AIDS Pathol. 1990;2:25–32.PubMedGoogle Scholar
  50. 50.
    Wood GS, Garcia CF, Dorfman RF, Warnke RA. The immunohistology of follicle lysis in lymph node biopsies from homosexual men. Blood. 1985;66(5):1092–7.PubMedGoogle Scholar
  51. 51.
    Rosenberg YJ, Lewis MG, Greenhouse JJ, Cafaro A, Leon EC, Brown CR, Bieg KE, Kosco-Vilbois MH. Enhanced follicular dendritic cell function in lymph nodes of simian immunodeficiency virus-infected macaques: consequences for pathogenesis. Eur J Immunol. 1997;27(12):3214–22.CrossRefPubMedGoogle Scholar
  52. 52.
    Smelt SC, Engwerda CR, McCrossen M, Kaye PM. Destruction of follicular dendritic cells during chronic visceral leishmaniasis. J Immunol. 1997;158(8):3813–21.PubMedGoogle Scholar
  53. 53.
    Zeng M, Paiardini M, Engram JC, Beilman GJ, Chipman JG, Schacker TW, Silvestri G, Haase AT. Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution. Blood. 2012;120(9):1856–67.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zeng M, Southern PJ, Reilly CS, Beilman GJ, Chipman JG, Schacker TW, Haase AT. Lymphoid tissue damage in HIV-1 infection depletes naive T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012;8(1):e1002437.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ato M, Stager S, Engwerda CR, Kaye PM. Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nat Immunol. 2002;3(12):1185–91.CrossRefPubMedGoogle Scholar
  56. 56.
    Graw F, Regoes RR. Influence of the fibroblastic reticular network on cell-cell interactions in lymphoid organs. PLoS Comput Biol. 2012;8(3):e1002436.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Scandella E, Bolinger B, Lattmann E, Miller S, Favre S, Littman DR, Finke D, Luther SA, Junt T, Ludewig B. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol. 2008;9(6):667–75.CrossRefPubMedGoogle Scholar
  58. 58.
    Benedict CA, De Trez C, Schneider K, Ha S, Patterson G, Ware CF. Specific remodeling of splenic architecture by cytomegalovirus. PLoS Pathog. 2006;2(3):e16.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Engwerda CR, Ato M, Cotterell SE, Mynott TL, Tschannerl A, Gorak-Stolinska PM, Kaye PM. A role for tumor necrosis factor-alpha in remodeling the splenic marginal zone during Leishmania donovani infection. Am J Pathol. 2002;161(2):429–37.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Beattie L, Engwerda CR, Wykes M, Good MF. CD8+ T lymphocyte-mediated loss of marginal metallophilic macrophages following infection with Plasmodium chabaudi chabaudi AS. J Immunol. 2006;177(4):2518–26.CrossRefPubMedGoogle Scholar
  61. 61.
    Yurdakul P, Dalton J, Beattie L, Brown N, Erguven S, Maroof A, Kaye PM. Compartment-specific remodeling of splenic micro-architecture during experimental visceral leishmaniasis. Am J Pathol. 2011;179(1):23–9.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Dalton JE, Maroof A, Owens BM, Narang P, Johnson K, Brown N, Rosenquist L, Beattie L, Coles M, Kaye PM. Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice. J Clin Invest. 2010;120(4):1204–16.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Grewal JS, Pilgrim MJ, Grewal S, Kasman L, Werner P, Bruorton ME, London SD, London L. Salivary glands act as mucosal inductive sites via the formation of ectopic germinal centers after site-restricted MCMV infection. FASEB J. 2011;25(5):1680–96.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    GeurtsvanKessel CH, Willart MA, Bergen IM, van Rijt LS, Muskens F, Elewaut D, Osterhaus AD, Hendriks R, Rimmelzwaan GF, Lambrecht BN. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J Exp Med. 2009;206(11):2339–49.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Slight SR, Rangel-Moreno J, Gopal R, Lin Y, Fallert Junecko BA, Mehra S, Selman M, Becerril-Villanueva E, Baquera-Heredia J, Pavon L, Kaushal D, Reinhart TA, Randall TD, Khader SA. CXCR5(+) T helper cells mediate protective immunity against tuberculosis. J Clin Invest. 2013;123(2):712–26.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Moore JW, Beattie L, Dalton JE, Owens BM, Maroof A, Coles MC, Kaye PM. B cell: T cell interactions occur within hepatic granulomas during experimental visceral leishmaniasis. PLoS One. 2012;7(3):e34143.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Barone F, Nayar S, Buckley CD. The role of non-hematopoietic stromal cells in the persistence of inflammation. Front Immunol. 2012;3:416.PubMedGoogle Scholar
  68. 68.
    Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O’Neill LA, Perretti M, Rossi AG, Wallace JL. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 2007;21(2):325–32.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Russell CD, Schwarze J. The role of pro-resolution lipid mediators in infectious disease. Immunology. 2014;141(2):166–73.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rajasagi NK, Reddy PB, Suryawanshi A, Mulik S, Gjorstrup P, Rouse BT. Controlling herpes simplex virus-induced ocular inflammatory lesions with the lipid-derived mediator resolvin E1. J Immunol. 2011;186(3):1735–46.CrossRefPubMedGoogle Scholar
  71. 71.
    Zeng M, Haase AT, Schacker TW. Lymphoid tissue structure and HIV-1 infection: life or death for T cells. Trends Immunol. 2012;33(6):306–14.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Immunology and Infection, Department of Biology and Hull York Medical SchoolUniversity of YorkYorkUK

Personalised recommendations