Skip to main content

From Sustainable Development to Coviability – The Viewpoint of Earth Observation in the Era of Big Data

  • Chapter
  • First Online:
  • 267 Accesses

Abstract

Today civil society have new expectations: scientists must not only measure risks and suggest solutions of mitigation or adaptation, but they also have to monitor and report changes in order to facilitate public decision. Reporting global change nowadays is based on indicators. The main challenge is to find synthetic, and valid indicators for time and space scales relevant to challenges and to mitigation and adaptation policies. Simultaneously, Earth observation has largely evolved. The number of spatial missions has drastically increased, and today we have relatively continuous data in space and in time. This remote sensing evolution causes a shift of paradigm. The richness of data, and the fact that they now cover a wide range of resolutions and temporal frequency, make a “bottom up” approach possible, which develops from the observations to construct a stochastic approach of the environmental and social dynamics at work. This chapter will attempt to give some examples of holistic indicators of changes in the fields of global water resources and biodiversity loss, provoked by human impacts on the Amazonian agricultural frontier. These themes mobilize the concept of coviability between societies and their environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://unstats.un.org/sdgs/iaeg-sdgs/

  2. 2.

    http://unstats.un.org/unsd/statcom/47th-session/documents/2016-2-SDGs-Rev1-E.pdf

  3. 3.

    (http://www.adequations.org/spip.php?article2102#outil_sommaire_1, site visité le 19/02/2016).

  4. 4.

    http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb/Page_2.html, visitée le 19/02/2016.

  5. 5.

    www.copernicus.eu

References

  • Barrière O (2008) Legal aspects of the co-viability of social and ecological systems in African arid zones: an anthropological approach to environmental law. In: Lee C, Schaaf T (eds) The future of drylands. Springer & Unesco, Paris, pp 583–597

    Google Scholar 

  • Barrière O (2012) Eléments d’une socio-écologie juridique : le droit face à l’urgence écologique, essai d’une anthropologie juridique de l’environnement. Mémoire d’habilitation à diriger des recherches, Université de Limoges, 154 p

    Google Scholar 

  • Becker M, Silva JS, Calmant S, Robinet V, Seyler F (2014) Water level fluctuations in the Congo Basin derived from Envisat satellite altimetry. Remote Sens 6(10):9340–9358. ISSN 2072-4292

    Article  Google Scholar 

  • Brown L (2007) Le plan B. trad. fr. Hachette Littératures, coll. “Pluriel”

    Google Scholar 

  • Calmant S, Seyler F (2006) Continental surface water from satellite altimetry. Compt Rendus Geosciences 2006(338):1113–1122

    Article  Google Scholar 

  • Calmant S, Seyler F, Créteaux JF (2008) Monitoring continental surface waters by satellite altimetry. Surv Geophys 29(4–5):247–269

    Article  Google Scholar 

  • Cohen O (2015) Le monde est clos et le désir est infini. Ed. Albin Michel, 220p

    Google Scholar 

  • Crutzen PJ (2002) The Anthropocene: geology of mankind. Nature 415:23

    Article  CAS  Google Scholar 

  • Delaître E, Laques A-E, Mitja D, Thales MC, Miranda IS, Coelho RFR, Neiva SM (2012) Satellite images to monitor influence of public policies on biodiversity of the Brazilian Amazon frontier at two scales of analysis : set of farms and agricultural commity. 13th congress of the international society of ethnobiology, 20–25 mai 2012; Montpellier, France

    Google Scholar 

  • Dubos R, Ward B (1972) Nous n’avons qu’une Terre, Ed. J’ai Lu

    Google Scholar 

  • Georgescu-Roegen N (1979) Demain la décroissance. In: Entropie, écologie, économie. Pierre-Marcel Favre, Lausanne. 157 p

    Google Scholar 

  • InforMEA (2016): https://www.informea.org

  • IPCC 2014 Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, pp 151

    Google Scholar 

  • Kramer HJ (2002) Observation of the earth and its environment – survey of missions and sensors. Springer, New York. 1514 p

    Book  Google Scholar 

  • Laques A-E, Mitja D, Delaître E, Thales MC, Miranda IS, Coelho RFR, Neiva SM (2012) Spatialisation de la biodiversité en Amazonie brésilienne pour appréhender l’influence de la colonisation des terres et des politiques publiques. Revue Vertigo, Hors-série 14:1–21

    Google Scholar 

  • Laraque A, Mahé G, Orange D, Marieu B (2001) Spatiotemporal variations in hydrological regimes within Central Africa during the XXth century. J Hydrol 245(1):104–117

    Article  Google Scholar 

  • Laraque A, Bricquet JP, Pandi A, Olivry JC (2009) A review of material transport by the Congo River and its tributaries. Hydrol Process 23(22):3216–3224

    Article  Google Scholar 

  • Mendel G (1977) La chasse structurale. Payot, Paris. ISBN 2-228-33280-1

    Google Scholar 

  • Molden D, Frenken K, Barker R, Fraiture C de Mati B, Svendsen M, Sadoff C, Finlayson CM, Attapatu S (collab), Giordano M (collab), Inocencio A (collab), Lannerstad M (collab), Manning N (collab), Molle François (collab), Smedema B (collab), Vallée D (collab) (2007) Trends in water and agricultural development. Molden D (ed) Water for food, water for life: a comprehensive assessment of water management in agriculture, Earthscan London, pp 57–89. ISBN 9781844073962

    Google Scholar 

  • Morin E (2011) La voie, Fayard

    Google Scholar 

  • Nagendra H (2001) Using remote sensing to assess biodiversity. Int J Remote Sens 22(12):377–2400

    Article  Google Scholar 

  • National Research Council (2007) Earth science and applications from space: national imperatives for the next decade and beyond. The National Academic Press, Washington, DC, 456 p

    Google Scholar 

  • OMM (2016) Observing Systems Capability Analysis and Review Tool, http://www.wmo-sat.info/oscar/, website consulté le 12/01/2016

  • Rao DP (2000) Role of remote sensing and geographic information system in sustainable development, international archives of photogrammetry and remote sensing. vol XXXIII, Part B7. Amsterdam, pp 1231–1251

    Google Scholar 

  • Skimmer AK et al (1997) Use of remote sensing and GIS for sustainable land management. ITC J 3/4:302–315

    Google Scholar 

  • Steinberger M (org) (2006) Território, ambiente e políticas públicas espaciais, Brasília. Ed. Paralelo 15 e LGE Editora, 2006, 408 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Durieux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durieux, L., Seyler, F., Laques, AE., Mitja, D., Delaître, E., de Souza Miranda, I. (2019). From Sustainable Development to Coviability – The Viewpoint of Earth Observation in the Era of Big Data. In: Barrière, O., et al. Coviability of Social and Ecological Systems: Reconnecting Mankind to the Biosphere in an Era of Global Change. Springer, Cham. https://doi.org/10.1007/978-3-319-78111-2_15

Download citation

Publish with us

Policies and ethics