Skip to main content

Abstract

Since an important degree of the carbon dioxide (CO2) that mankind emits in the atmosphere ends up in the ocean as a result of gas exchange through the air-sea interface, the ocean acidifies itself (because of the reaction CO2 produces when it contacts water). Ocean acidification is one of the perturbing anthropogenic effects (because of human activity), not only for maritime ecosystems but also for Man himself as he will have to adapt. He will have to deal with variations in fisheries and other costal touristic activities (reduction of corals, and so on). However, the anthropogenic CO2 penetration in the ocean is not uniform, and the cold Polar Regions will be affected by the change faster than the warm tropical regions. The study that we are conducting addresses several points of the quantification, in time and space, of anthropogenic CO2 penetration in the ocean. One of them has permitted the identification of breaking points. We demonstrate that four tipping points can be located in order to quantify risks of ocean acidification, which may have as a result the dissolution of calcium carbonates that are indispensable to marine ecosystems (shells, corals, and so on).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such as the recent Conference of the Parties of the Framework Convention on Climate Change (1992), 21st session (COP 21), Paris, 30 November -11 December 2015, and whose signed agreement in April 2016 has a legal force applicable to all parties.

  2. 2.

    http://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F.

  3. 3.

    http://www.insu.cnrs.fr/files/858_1.pdf.

References

  • Alvarez M, Lo Monaco C, Tanhua T, Yool A, Oschlies A, Bullister JL, Goyet C, Touratier F, Wanninkhof R, McDonagh E, Bryden HL (2009) Storage of anthropogenic carbon in the Indian Ocean: a comparison of five models. Biogeosciences 6:681–703

    Article  CAS  Google Scholar 

  • Benallal MA, Moussa H, Touratier F, Goyet C, Poisson A (2016) Ocean salinity from satellite-derived temperature in the Antarctic Ocean. Antarct Sci 28:127–134. https://doi.org/10.1017/S0954102015000516

    Article  Google Scholar 

  • Bijoux A, Ribou A-C (2014) Time-resolved microfluorimetry: an alternative method for free radical and metabolic rate detection in microalgae. Biotechnol J 9(2):294–300

    Article  CAS  Google Scholar 

  • Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596

    Article  CAS  Google Scholar 

  • Brewer PG (1978) Direct observation of the oceanic CO2 increase. Geophys Res Lett 5:997–1000. https://doi.org/10.1029/GL005i012p00997

    Article  CAS  Google Scholar 

  • Chen CT, Millero FJ (1979) Gradual increase of oceanic carbon dioxide. Nature 277:205–206

    Article  CAS  Google Scholar 

  • Chen CTA (1993) The oceanic anthropogenic CO2 sink. Chemosphere 27:1041–1064

    Article  CAS  Google Scholar 

  • Coatanoan C, Goyet C, Gruber N, Sabine CL, Warner M (2001) Comparison of the two approaches to quantify anthropogenic CO2 in the ocean: results from the northern Indian Ocean. Global Biogeochemical Cycle 15(1):11–25

    Article  CAS  Google Scholar 

  • Dickson AG (1981) An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res 28A:609–623

    Article  Google Scholar 

  • Dickson AG, Riley JP (1979) The estimation of acid dissociation constants in seawater media from potentiometric titrations with strong base. I. The ionic product of water (Kw). Mar Chem 7:89–99

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743

    Article  CAS  Google Scholar 

  • DOE (1994) Handbook of methods for analysis of the various parameters of the carbon dioxide system in seawater; version 2, Dickson AG et Goyet C (eds), ORNL/CDIAC-74

    Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • GAO (2014) Ocean acidification: federal response under way, but actions needed to understand and address potential impacts http://www.gao.gov/products/GAO-14-736 GAO-14-736: Published: Sep 12, 2014. Publicly Released: Oct 14, 2014

  • Gerber M, Joos F, Vázquez-Rodríguez M, Touratier F, Goyet C (2009) Regional air-sea fluxes of anthropogenic carbon inferred with an Ensemble Kalman Filter. Global Biological Cycle 23:GB1013. https://doi.org/10.1029/2008GB003247

    Article  CAS  Google Scholar 

  • Geri P, El Yacoubi S, Goyet C (2014) Forecast by extrapolation of sea surface acidification in the northwestern Mediterranean Sea. J Comput Environ Sci, vol 2014, Article ID 201819, 7 p. https://doi.org/10.1155/2014/201819

  • GIEC (2001) Climate change 2001: the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 881

    Google Scholar 

  • GIEC (2007) Bilan 2007 des changements climatiques. Contribution des Groupes de travail I, II et III au quatrième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat [Équipe de rédaction principale, Pachauri, R.K. et Reisinger, A. (publié sous la direction de~)]. GIEC, Genève, Suisse, …, 103 pages

    Google Scholar 

  • GIEC (2013) Résumé à l’intention des décideurs, Changements climatiques 2013: Les éléments scientifiques. Contribution du Groupe de travail I au cinquième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat [sous la direction de Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex et P.M. Midgley]. Cambridge University Press, Cambridge, Royaume-Uni et New York (État de New York), États-Unis d’Amérique

    Google Scholar 

  • Goyet C, Brewer PG (1993) Biochemical properties of the oceanic carbon cycle. In: Willebrand J, Anderson DLT (eds) Modelling oceanic climate interactions. NATO ASI Series, I 11, Springer, Berlin/Heidelberg, pp 271–297

    Google Scholar 

  • Goyet C, Adams R, Eischeid G (1998) Observed increase of anthropogenic CO2 in the tropical Atlantic Ocean. Mar Chem 60:49–61

    Article  CAS  Google Scholar 

  • Goyet C, Coatanoan C, Eischeid G, Amaoka T, Okuda K, Tsunogai RH e S (1999) Spatial variation of total CO2 and total alkalinity in the northern Indian Ocean: a novel approach for the quantification of anthropogenic CO2 in seawater. J Mar Res 57:135–163

    Article  CAS  Google Scholar 

  • Goyet C, Ito Gonçalves R, Touratier F (2009) Anthropogenic carbon in the eastern tropical Pacific Ocean. Biogeosciences 6:149–156

    Article  CAS  Google Scholar 

  • Goyet C, Hassoun AER, Gemayel E, Touratier F, Abboud-Abi Saab M, Guglielmi V (2016) Thermodynamic forecasts of the mediterranean sea acidification. Mediterr Mar Sci 17(2):508–518

    Article  Google Scholar 

  • Gruber N, Sarmiento JL, Stocker TF (1996) An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochem Cycles 10:809–837

    Article  CAS  Google Scholar 

  • Gruber N (1998) Anthropogenic CO2 in the Atlantic Ocean. Global Biogeochem Cycles 12:165–191

    Article  CAS  Google Scholar 

  • Laika H, Goyet C, Vouvé F, Poisson A, Touratier F (2009) Temporal properties of the CO2 system in the Southern Ocean south of Australia. Antarct Sci 21(6):663–680. https://doi.org/10.1017/S0954102009990319

    Article  Google Scholar 

  • Liu W, Au DWT, Anderson DM, Lam PKS, Wu RSS (2007) Effects of nutrients, salinity, pH and light: dark cycle on the production of reactive oxygen species in the alga Chattonella marina. J Exp Mar Biol Ecol 346:76–86

    Article  CAS  Google Scholar 

  • Lo Monaco C., C. Goyet, N. Metzl, A. Poisson and F. Touratier (2005) Distribution and inventory of anthropogenic CO2 in the Southern Ocean: comparison of three data-based methods. J Geophys Res, 110, C09S02, https://doi.org/10.1029/2004JC002571

  • Mackas DL (2011) Does blending of chlorophyll data bias temporal trend ? Nature 472:E4–E5

    Article  CAS  Google Scholar 

  • McDowell N, Allen CD (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Chang. https://doi.org/10.1038/NCLIMATE2641

  • McQuatters-Gollop A, Reid P, Edwards M, Burkill P, Castellani C, Batten S, Gieskes W, Beare D, Bidigare R, Head E, Johnson R, Kahru M, Joslow J, Pena A (2011) Is there a decline in marine phytoplankton ? Nature 472:E6–E7

    Article  CAS  Google Scholar 

  • Moussa H, Goyet C, Benallal MA, Lefevre N, Guglielmi V, El Jai M (2015) A comparison of neutral network and multiple linear regression technique for sea surface salinity estimation in the tropical Atlantic Ocean based on satellite data. ESAIM: Proc Surv 49:65–77

    Article  Google Scholar 

  • Moussa H, Benallal MA, Goyet C, Lefèvre N (2016) Satellite-derived CO 2 fugacity in surface seawater of the tropical Atlantic Ocean using a feedforward neural network. Int J Remote Sens 37(3):580–598. https://doi.org/10.1080/01431161.2015.1131872

    Article  Google Scholar 

  • NOAA (2015) ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic Ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  Google Scholar 

  • Peng TH, Takahashi T, Broecker WS, Olafsson J (1987) Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water: observations and model. Tellus 39B:439–458

    Article  CAS  Google Scholar 

  • Rykaczewski RR, Dunne JP (2011) A measured look at ocean chlorophyll trends. Nature 472, nature09952, 2011

    Google Scholar 

  • Rapport des Nations Unies (2014) Pour un dévéloppement intelligent face au climat, 88908 v2

    Google Scholar 

  • Sabine CL, Key RM, Johnson KM, Millero FJ, Poisson A, Sarmiento JL, Wallace DWR, Winn CD (1999) Anthropogenic CO2 inventory of the Indian Ocean. Global Biogeochem Cycles 13:179–198

    Article  CAS  Google Scholar 

  • Satoh M, Matsumoto Y (2008) Mercury-induced oxidative stress in marine phytoplankton Tetraselmis tetrathele (Prasinophyceae). Nat Sci Res Univ Tokushima 22:57–63

    Google Scholar 

  • Takahashi T, Williams RT, Bos DL (1982) Carbonate chemistry. In: Broecker WS, Spencer DW, Craig H (eds) GEOSECS Pacific expedition, Volume 3, Hydrographic data 1973–1974. National Science Foundation, Washington, DC, pp 77–83

    Google Scholar 

  • Tanhua T, Waugh DW, Wallace DWR (2008) Use of SF6 to estimate anthropogenic co2 in the upper ocean. J Geophys Res 113:C04037. https://doi.org/10.1029/2007JC004416

    Article  CAS  Google Scholar 

  • Thomas H et al (2001) An off‐line 3D model of anthropogenic CO2 uptake by the oceans. GRL 28(3):547–550

    Article  CAS  Google Scholar 

  • Touratier F, Goyet C (2004a) Definition, properties, and Atlantic Ocean distribution of the new tracer TrOCA. J Mar Syst 46:169–179

    Article  Google Scholar 

  • Touratier F, Goyet C (2004b) Applying the new TrOCA approach to estimate the distribution of anthropogenic CO2 in the Atlantic Ocean. J Mar Syst 46:181–197

    Article  Google Scholar 

  • Touratier F, Azouzi L, Goyet C (2007) CFC-11, Δ14C, and 3H tracers as a means to assess anthropogenic CO2 concentrations in the ocean. Tellus 59B:318–325

    Article  CAS  Google Scholar 

  • Vázquez-Rodríguez M, Touratier F, Lo Monaco C, Waugh DW, Padin XA, Bellerby RGJ, Goyet C, Metzl N, Ríos AF, Pérez FF (2009) Anthropogenic carbon distributions in the Atlantic Ocean: data-based estimates from the Arctic to the Antarctic. Biogeosciences 6:439–451

    Article  Google Scholar 

  • Waugh DW, Haine TWN, Hall TM (2004) Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean. Deep-Sea Res I 51:1475–1491

    Article  CAS  Google Scholar 

  • Waugh DW, Hall TM, McNeil BI, Key R, Matear RJ (2006) Anthropogenic CO2 in the oceans estimated sing transit time distributions. Tellus 58B:376–389

    Article  CAS  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water’ and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215

    Article  CAS  Google Scholar 

  • Williamson P, Turley C, Brownlee C, Findlay HS, Ridgwell A, Schmidt DN, Schroeder DC, Blackford J, Tyrell T, Pinnegar JK (2013) Impacts of ocean acidification. MCCIP Sci Rev 2013:34–48. https://doi.org/10.14465/2013.arc05.034-048

    Article  Google Scholar 

  • Zuppini A, Gerotto C, Baldan B (2010) Programmed cell death and adaptation: two different types of abiotic stress response in a unicellular chlorophyte. Plant Cell Physiol 51(6):884–895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Goyet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goyet, C. et al. (2019). Evolution of the Human Impact on Oceans: Tipping Points of Socio-ecological Coviability. In: Barrière, O., et al. Coviability of Social and Ecological Systems: Reconnecting Mankind to the Biosphere in an Era of Global Change. Springer, Cham. https://doi.org/10.1007/978-3-319-78111-2_12

Download citation

Publish with us

Policies and ethics