Skip to main content

Semantic Mediation to Improve Reproducibility for Biomolecular NMR Analysis

  • Conference paper
  • First Online:
Transforming Digital Worlds (iConference 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10766))

Included in the following conference series:

  • 5730 Accesses

Abstract

Two barriers to computational reproducibility are the ability to record the critical metadata required for rerunning a computation, as well as translating the semantics of the metadata so that alternate approaches can easily be configured for verifying computational reproducibility. We are addressing this problem in the context of biomolecular NMR computational analysis by developing a series of linked ontologies which define the semantics of the various software tools used by researchers for data transformation and analysis. Building from a core ontology representing the primary observational data of NMR, the linked data approach allows for the translation of metadata in order to configure alternate software approaches for given computational tasks. In this paper we illustrate the utility of this with a small sample of the core ontology as well as tool-specific semantics for two third-party software tools. This approach to semantic mediation will help support an automated approach to validating the reliability of computation in which the same processing workflow is implemented with different software tools. In addition, the detailed semantics of both the data and the processing functionalities will provide a method for software tool classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, we use the definitions of Vitek and Kalibera [3] that repeatability is the ability for the same researcher to get the same results with the same computational environment, while reproducibility is the ability for others to get similar results with similar computational tools.

References

  1. Munafò, M.R., Nosek, B.A., Bishop, D.V.M., Button, K.S., Chambers, C.D., Percie du Sert, N., Simonsohn, U., Wagenmakers, E.-J., Ware, J.J., Ioannidis, J.P.A.: A manifesto for reproducible science. Nat. Hum. Behav. 1, 1–9 (2017)

    Article  Google Scholar 

  2. Kanwal, S., Khan, F.Z., Lonie, A., Sinnot, R.O.: Investigating reproducibility and tracking provenance – a genomic workflow case study. BMC Bioinform. 18, 337 (2017)

    Article  Google Scholar 

  3. Vitek, J., Kalibera, T.: Repeatability, reproducibility, and rigor in systems research. In: Proceedings of the Ninth ACM International Conference on Embedded software (EMSOFT 2011), pp. 33–38 (2011)

    Google Scholar 

  4. Stodden, V., Miguez, S.: Best practices for computational science: software infrastructure and environments for reproducible and extensible research. J. Open Res. Softw. 2(1), e21 (2014)

    Article  Google Scholar 

  5. Verdi, K.K., Ellis, H.J., Gryk, M.R.: Conceptual-level workflow modeling of scientific experiments using NMR as a case study. BMC Bioinform. 8, 31 (2007)

    Article  Google Scholar 

  6. Ellis, H.J.C., Nowling, R.J., Vyas, J., Martyn, T.O., Gryk, M.R.: Iterative development of an application to support nuclear magnetic resonance data analysis of proteins. In: Proceedings of the International. Conference on Information Technology: New Generations, pp. 1014–1020 (2011)

    Google Scholar 

  7. Maciejewski, M.W., Schuyler, A.D., Gryk, M.R., Moraru, I.I., Romero, P.R., Ulrich, E.L., Eghbalnia, H.R., Livny, M., Delaglio, F., Hoch, J.C.: NMRbox: a resource for biomolecular NMR computation. Biophys. J. 112(8), 1529–1534 (2017)

    Article  Google Scholar 

  8. Piccolo, S.R., Frampton, M.B.: Tools and techniques for computational reproducibility. GigaScience 5(1), 30 (2016)

    Article  Google Scholar 

  9. Bowers, S., Ludäscher, B.: Towards a generic framework for semantic registration of scientific data. In: Semantic Web Technologies for Searching and Retrieving Scientific Data (SCISW) (2003)

    Google Scholar 

  10. McPhillips, T., Song, T., Kolisnik, T., Aulenbach, S., Belhajjame, K., Bocinsky, K., Cao, Y., Chirigati, F., Dey, S., Freire, J., Huntzinger, D., Jones, C., Koop, D., Missier, P., Schildhauer, M., Schwalm, C., Wei, Y., Cheney, J., Bieda, M., Ludäscher, B.: YesWorkflow: a user-oriented, language-independent tool for recovering workflow information from scripts. Int. J. Digit. Curation 10(1), 298–313 (2015)

    Article  Google Scholar 

  11. Madin, J.S., Bowers, S., Schildhauer, M., Jones, M.: Advancing ecological research with ontologies. Trends Ecol. Evol. 23, 159–168 (2008)

    Article  Google Scholar 

  12. Nowling, R.J., Vyas, J., Weatherby, G., Fenwick, M.W., Ellis, H.J.C., Gryk, M.R.: CONNJUR spectrum translator: an open source application for reformatting NMR spectral data. J. Biomol. NMR 50(1), 83–89 (2011)

    Article  Google Scholar 

  13. Bowers, S., Ludäscher, B.: Actor-oriented design of scientific workflows. In: Delcambre, L., Kop, C., Mayr, Heinrich C., Mylopoulos, J., Pastor, O. (eds.) ER 2005. LNCS, vol. 3716, pp. 369–384. Springer, Heidelberg (2005). https://doi.org/10.1007/11568322_24

    Chapter  Google Scholar 

  14. Rijgersberg, H., van Assem, M., Top, J.: Ontology of units of measure and related concepts. Semant. Web Interoper. Usabil. Appl. 4, 3–13 (2011)

    Google Scholar 

  15. Fenwick, M., Weatherby, G., Vyas, J., Sesanker, C., Martyn, T.O., Ellis, H.J.C., Gryk, M.R.: CONNJUR workflow builder: a software integration environment for spectral reconstruction. J. Biomol. NMR 62, 313–326 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number GM-111135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Gryk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gryk, M.R., Ludäscher, B. (2018). Semantic Mediation to Improve Reproducibility for Biomolecular NMR Analysis. In: Chowdhury, G., McLeod, J., Gillet, V., Willett, P. (eds) Transforming Digital Worlds. iConference 2018. Lecture Notes in Computer Science(), vol 10766. Springer, Cham. https://doi.org/10.1007/978-3-319-78105-1_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78105-1_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78104-4

  • Online ISBN: 978-3-319-78105-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics