Rules for Inducing Hierarchies from Social Tagging Data

  • Hang DongEmail author
  • Wei Wang
  • Frans Coenen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10766)


Automatic generation of hierarchies from social tags is a challenging task. We identified three rules, set inclusion, graph centrality and information-theoretic condition from the literature and proposed two new rules, fuzzy set inclusion and probabilistic association to induce hierarchical relations. We proposed an hierarchy generation algorithm, which can incorporate each rule with different data representations, i.e., resource and Probabilistic Topic Model based representations. The learned hierarchies were compared to some of the widely used reference concept hierarchies. We found that probabilistic association and set inclusion based rules helped produce better quality hierarchies according to the evaluation metrics.


  1. 1.
    Benz, D., Hotho, A., Stumme, G., Stützer, S.: Semantics made by you and me: Self-emerging ontologies can capture the diversity of shared knowledge. In: Proceedings of the 2nd Web Science Conference (WebSci10) (2010)Google Scholar
  2. 2.
    Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using formal concept analysis. J. Artif. Intell. Res. (JAIR) 24(1), 305–339 (2005)zbMATHGoogle Scholar
  3. 3.
    Cruse, D.A.: Hyponymy and its varieties. In: Green, R., Bean, C.A., Myaeng, S.H. (eds.) The Semantics of Relationships: An Interdisciplinary Perspective, pp. 3–21. Springer, Dordrecht (2002). CrossRefGoogle Scholar
  4. 4.
    Dellschaft, K., Staab, S.: Measuring the similiarity of concept hierarchies and its influence on the evaluation of learning procedures. Master’s thesis (Diplomarbeit), University of Koblenz-Landau (2005)Google Scholar
  5. 5.
    Dellschaft, K., Staab, S.: On how to perform a gold standard based evaluation of ontology learning. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 228–241. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  6. 6.
    Dong, H., Wang, W., Frans, C.: Deriving dynamic knowledge from academic social tagging data: a novel research direction. In: iConference 2017 Proceedings (2017)Google Scholar
  7. 7.
    García-Silva, A., Corcho, O., Alani, H., Gómez-Pérez, A.: Review of the state of the art: discovering and associating semantics to tags in folksonomies. Knowl. Eng. Rev. 27(1), 57–85 (2012)CrossRefGoogle Scholar
  8. 8.
    Griffiths, T.L., Steyvers, M.: Prediction and semantic association. In: Proceedings of the 15th International Conference on Neural Information Processing Systems, pp. 11–18. MIT Press (2002)Google Scholar
  9. 9.
    Heymann, P., Garcia-Molina, H.: Collaborative creation of communal hierarchical taxonomies in social tagging systems. Technical report, Stanford University (2006)Google Scholar
  10. 10.
    Jabeen, F., Khusro, S.: Quality-protected folksonomy maintenance approaches: a brief survey. Knowl. Eng. Rev. 30(5), 521–544 (2015)CrossRefGoogle Scholar
  11. 11.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002). CrossRefGoogle Scholar
  12. 12.
    Meo, P.D., Quattrone, G., Ursino, D.: Exploitation of semantic relationships and hierarchical data structures to support a user in his annotation and browsing activities in folksonomies. Inf. Syst. 34(6), 511–535 (2009)CrossRefGoogle Scholar
  13. 13.
    Mika, P.: Ontologies are us: a unified model of social networks and semantics. Web Semant.: Sci. Serv. Agents World Wide Web 5(1), 5–15 (2007)CrossRefGoogle Scholar
  14. 14.
    Peters, I., Becker, P.: Folksonomies: Indexing and Retrieval in Web 2.0. De Gruyter/Saur, Berlin (2009)CrossRefGoogle Scholar
  15. 15.
    Stock, W.G.: Concepts and semantic relations in information science. J. Am. Soc. Inf. Sci. Technol. 61(10), 1951–1969 (2010)CrossRefGoogle Scholar
  16. 16.
    Strohmaier, M., Helic, D., Benz, D., Körner, C., Kern, R.: Evaluation of folksonomy induction algorithms. ACM Trans. Intell. Syst. Technol. 3(4), 1–22 (2012)CrossRefGoogle Scholar
  17. 17.
    Tho, Q.T., Hui, S.C., Fong, A.C.M., Cao, T.H.: Automatic fuzzy ontology generation for semantic web. IEEE Trans. Knowl. Data Eng. 18(6), 842–856 (2006)CrossRefGoogle Scholar
  18. 18.
    Wang, W., Barnaghi, P.M., Bargiela, A.: Probabilistic topic models for learning terminological ontologies. IEEE Trans. Knowl. Data Eng. 22(7), 1028–1040 (2010)CrossRefGoogle Scholar
  19. 19.
    Weller, K.: Knowledge Representation in the Social Semantic Web. De Gruyter Saur, Berlin/New York (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.Department of Computer Science and Software EngineeringXi’an Jiaotong-Liverpool UniversitySuzhouChina

Personalised recommendations