Advertisement

Counting and Conjunctive Queries in the Lifted Junction Tree Algorithm

  • Tanya Braun
  • Ralf Möller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10775)

Abstract

Standard approaches for inference in probabilistic formalisms with first-order constructs include lifted variable elimination (LVE) for single queries. To handle multiple queries efficiently, the lifted junction tree algorithm (LJT) uses a first-order cluster representation of a knowledge base and LVE in its computations. We extend LJT with a full formal specification of its algorithm steps incorporating (i) the lifting tool of counting and (ii) answering of conjunctive queries. Given multiple queries, e.g., in machine learning applications, our approach enables us to compute answers faster than the current LJT and existing approaches tailored for single queries.

References

  1. 1.
    Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for scaling loopy belief propagation and relational training. Mach. Learn. 92(1), 91–132 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bellodi, E., Lamma, E., Riguzzi, F., Costa, V.S., Zese, R.: Lifted variable elimination for probabilistic logic programming. Theory Pract. Log. Program. 14(4–5), 681–695 (2014)CrossRefzbMATHGoogle Scholar
  3. 3.
    Braun, T., Möller, R.: Lifted junction tree algorithm. In: Friedrich, G., Helmert, M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46073-4_3 CrossRefGoogle Scholar
  4. 4.
    Braun, T., Möller, R.: Preventing groundings and handling evidence in the lifted junction tree algorithm. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS (LNAI), vol. 10505, pp. 85–98. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67190-1_7 CrossRefGoogle Scholar
  5. 5.
    van den Broeck, G.: Lifted inference and learning in statistical relational models. Ph.D. thesis, KU Leuven (2013)Google Scholar
  6. 6.
    van den Broeck, G., Niepert, M.: Lifted probabilistic inference for asymmetric graphical models. In: AAAI 2015 Proceedings of the 29th Conference on Artificial Intelligence, pp. 3599–3605 (2015)Google Scholar
  7. 7.
    Chavira, M., Darwiche, A.: Compiling Bayesian networks using variable elimination. In: IJCAI 2007 Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 2443–2449 (2007)Google Scholar
  8. 8.
    Choi, J., Amir, E., Hill, D.J.: Lifted inference for relational continuous models. In: UAI 2010 Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, pp. 13–18 (2010)Google Scholar
  9. 9.
    Darwiche, A.: Recursive conditioning. Artif. Intell. 2(1–2), 4–51 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Das, M., Wu, Y., Khot, T., Kersting, K., Natarajan, S.: Scaling lifted probabilistic inference and learning via graph databases. In: Proceedings of the SIAM International Conference on Data Mining, pp. 738–746 (2016)Google Scholar
  12. 12.
    Gogate, V., Domingos, P.: Exploiting logical structure in lifted probabilistic inference. In: Working Note of the Workshop on Statistical Relational Artificial Intelligence at the 24th Conference on Artificial Intelligence, pp. 19–25 (2010)Google Scholar
  13. 13.
    Gogate, V., Domingos, P.: Probabilistic theorem proving. In: UAI 2011 Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pp. 256–265 (2011)Google Scholar
  14. 14.
    Jensen, F.V., Lauritzen, S.L., Olesen, K.G.: Bayesian updating in recursive graphical models by local computations. Comput. Stat. Q. 4, 269–282 (1990)zbMATHGoogle Scholar
  15. 15.
    Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: UAI 2009 Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pp. 277–284 (2009)Google Scholar
  16. 16.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. The MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  17. 17.
    Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. Royal Stat. Soc. Ser. B Methodol. 50, 157–224 (1988)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Milch, B., Zettelmeyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: AAAI 2008 Proceedings of the 23rd Conference on Artificial Intelligence, pp. 1062–1068 (2008)Google Scholar
  19. 19.
    Poole, D., Zhang, N.L.: Exploiting contextual independence in probabilistic inference. J. Artif. Intell. 18, 263–313 (2003)MathSciNetzbMATHGoogle Scholar
  20. 20.
    de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: IJCAI 2005 Proceedings of the 19th International Joint Conference on Artificial Intelligence (2005)Google Scholar
  21. 21.
    Shafer, G.R., Shenoy, P.P.: Probability propagation. Ann. Math. Artif. Intell. 2(1), 327–351 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Shenoy, P.P., Shafer, G.R.: Axioms for probability and belief-function propagation. Uncertain. Artif. Intell. 4(9), 169–198 (1990)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Singla, P., Domingos, P.: Lifted first-order belief propagation. In: AAAI 2008 Proceedings of the 23rd Conference on Artificial Intelligence, pp. 1094–1099 (2008)Google Scholar
  24. 24.
    Taghipour, N.: Lifted probabilistic inference by variable elimination. Ph.D. thesis, KU Leuven (2013)Google Scholar
  25. 25.
    Taghipour, N., Davis, J., Blockeel, H.: First-order decomposition trees. In: Advances in Neural Information Processing Systems 26, pp. 1052–1060. Curran Associates, Inc. (2013)Google Scholar
  26. 26.
    Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination: decoupling the operators from the constraint language. J. Artif. Intell. Res. 47(1), 393–439 (2013)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Vlasselaer, J., Meert, W., van den Broeck, G., Raedt, L.D.: Exploiting local and repeated structure in dynamic Baysian networks. Artif. Intell. 232, 43–53 (2016)CrossRefzbMATHGoogle Scholar
  28. 28.
    Zhang, N.L., Poole, D.: A simple approach to Bayesian network computations. In: Proceedings of the 10th Canadian Conference on Artificial Intelligence, pp. 171–178 (1994)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Information SystemsUniversität zu LübeckLübeckGermany

Personalised recommendations