Subjective Bayesian Networks and Human-in-the-Loop Situational Understanding

  • Dave Braines
  • Anna Thomas
  • Lance Kaplan
  • Murat Şensoy
  • Jonathan Z. Bakdash
  • Magdalena Ivanovska
  • Alun Preece
  • Federico Cerutti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10775)

Abstract

In this paper we present a methodology to exploit human-machine coalitions for situational understanding. Situational understanding refers to the ability to relate relevant information and form logical conclusions, as well as identify gaps in information. This process for comprehension of the meaning information requires the ability to reason inductively, for which we will exploit the machines’ ability to ‘learn’ from data. However, important phenomena are often rare in occurrence with high degrees of uncertainty, thus severely limiting the availability of instance data for training, and hence the applicability of many machine learning approaches. Therefore, we present the benefits of Subjective Bayesian Networks—i.e., Bayesian Networks with imprecise probabilities—for situational understanding, and the role of conversational interfaces for supporting decision makers in the evolution of situational understanding.

References

  1. 1.
    Akbilgic, O., Bozdogan, H., Balaban, M.E.: A novel hybrid RBF neural networks model as a forecaster. Stat. Comput. 24(3), 365–375 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Braines, D., Thomas, A., Kaplan, L., Sensoy, M., Ivanovska, M., Preece, A.D., Cerutti, F.: Human-in-the-loop situational understanding via subjective Bayesian networks. In: The 5th International Workshop on Graph Structures for Knowledge Representation and Reasoning (GKR 2017) (2017)Google Scholar
  3. 3.
    Brannon, N.G., Seiffertt, J.E., Draelos, T.J., Wunsch II, D.C.: Coordinated machine learning and decision support for situation awareness. Neural Netw. 22(3), 316–325 (2009)CrossRefGoogle Scholar
  4. 4.
    Brooke, J., et al.: SUS-A quick and dirty usability scale. In: Usability Evaluation in Industry, vol. 189(194), pp. 4–7 (1996)Google Scholar
  5. 5.
    Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explor. Newsl. 6(1), 1–6 (2004)CrossRefGoogle Scholar
  6. 6.
    Dhami, M.K., Mandel, D.R., Mellers, B.A., Tetlock, P.E.: Improving intelligence analysis with decision science. Perspect. Psychol. Sci. 10(6), 753–757 (2015)CrossRefGoogle Scholar
  7. 7.
    Dostal, B.C.: Enhancing situational understanding through employment of unmanned aerial vehicle. Army Transformation Taking Shape: Interim Brigade Combat Team Newsletter 01-18 (2007)Google Scholar
  8. 8.
    Helbing, D.: Globally networked risks and how to respond. Nature 497(7447), 51–59 (2013)CrossRefGoogle Scholar
  9. 9.
    Ivanovska, M., Jøsang, A., Kaplan, L., Sambo, F.: Subjective networks: perspectives and challenges. In: Croitoru, M., Marquis, P., Rudolph, S., Stapleton, G. (eds.) GKR 2015. LNCS (LNAI), vol. 9501, pp. 107–124. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28702-7_7 CrossRefGoogle Scholar
  10. 10.
    Jøsang, A.: Subjective Logic: A Formalism for Reasoning Under Uncertainty. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42337-1 CrossRefMATHGoogle Scholar
  11. 11.
    Kahneman, D.: Thinking, Fast and Slow. Macmillan, Basingstoke (2011)Google Scholar
  12. 12.
    Kaplan, L., Ivanovska, M.: Efficient subjective Bayesian network belief propagation for trees. In: International Conference on Information Fusion (FUSION), pp. 1300–1307 (2016)Google Scholar
  13. 13.
    Kaplan, L., Ivanovska, M.: Efficient subjective Bayesian network belief propagation for singly-connected graphs. Int. J. Approx. Reason. (2017, submitted)Google Scholar
  14. 14.
    Kaplan, L., Şensoy, M., Chakraborty, S., de Mel, G.: Partial observable update for subjective logic and its application for trust estimation. Inf. Fusion 26, 66–83 (2015)CrossRefGoogle Scholar
  15. 15.
    Karlsson, A., Johansson, R., Andler, S.F.: An empirical comparison of Bayesian and credal networks for dependable high-level information fusion. In: International Conference on Information Fusion (FUSION), pp. 1–8 (2008)Google Scholar
  16. 16.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  17. 17.
    Lerner, B., Malka, R.: Investigation of the K2 algorithm in learning Bayesian network classifiers. Appl. Artif. Intell. 25(1), 74–96 (2011)CrossRefGoogle Scholar
  18. 18.
    Lin, X., Moussawi, A., Korniss, G., Bakdash, J.Z., Szymanski, B.K.: Limits of risk predictability in a cascading alternating renewal process model. Sci. Rep. 7(1), 6699 (2017)CrossRefGoogle Scholar
  19. 19.
    Pearl, J.: Fusion, propagation, and structuring in belief networks. Artif. Intell. 29(3), 241–288 (1986)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Smets, P.: Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. Int. J. Approx. Reason. 9, 1–35 (1993)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Szymanski, B.K., Lin, X., Asztalos, A., Sreenivasan, S.: Failure dynamics of the global risk network. Sci. Rep. 5, 10998 (2015)CrossRefGoogle Scholar
  22. 22.
    Timmer, S.T., Meyer, J.J.C., Prakken, H., Renooij, S., Verheij, B.: A two-phase method for extracting explanatory arguments from Bayesian networks. Int. J. Approx. Reason. 80(C), 475–494 (2017)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Zaffalon, M., Fagiuoli, E.: 2U: an exact interval propagation algorithm for polytrees with binary variables. Artif. Intell. 106(1), 77–107 (1998)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as Non-IID samples. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1249–1256. ACM (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dave Braines
    • 1
    • 2
  • Anna Thomas
    • 1
  • Lance Kaplan
    • 3
  • Murat Şensoy
    • 2
    • 6
  • Jonathan Z. Bakdash
    • 4
    • 5
  • Magdalena Ivanovska
    • 7
  • Alun Preece
    • 2
  • Federico Cerutti
    • 2
  1. 1.IBM Hursley ParkWinchesterUK
  2. 2.Cardiff UniversityCardiffUK
  3. 3.U.S. Army Research LaboratoryAdelphiUSA
  4. 4.U.S. Army Research Laboratory South Field ElementThe University of TexasDallasUSA
  5. 5.Texas A&M CommerceCommerceUSA
  6. 6.Ozyegin UniversityIstanbulTurkey
  7. 7.University of OsloOsloNorway

Personalised recommendations