Skip to main content

Simulation of Cyclic Full-Scale Tests

  • Chapter
  • First Online:
  • 563 Accesses

Abstract

This chapter presents results of numerical simulations of cyclic large-scale tests described in Chap. 5, using various constitutive models including some described in Chap. 6 and material properties identified with material (small-scale) test data obtained in Chaps. 2 and 3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • API/ASME. (2007). PD395—API 579-1/ASME FFS-1. Fitness-for-Service.

    Google Scholar 

  • Armstrong, P. J., & Frederick, C. O. (1966). A mathematical representation of the multiaxial Bauschinger effect (CEGB Report No. RD/B/N 731).

    Google Scholar 

  • ASME. (2013). ASME boiler and pressure vessel code, Section VIII. Rules for Construction of Pressure Vessels, Division 2—Alternative Rules. New York, USA: The American Society of Mechanical Engineers (ASME).

    Google Scholar 

  • Bai, Y., & Wierzbicki, T. (2008). A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity, 24, 1071–1096.

    Article  CAS  Google Scholar 

  • Barbu, L. G., Martinez, X., Oller, S., Barbat, A. H. (2015). Validation on large scale tests of a new hardening-softening law for the Barcelona plastic damage model. International Journal of Fatigue, 81, 213–226.

    Article  Google Scholar 

  • Chaboche, J. L. (1989). Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity, 5, 247.

    Article  Google Scholar 

  • Dama, E., Karamanos, S. A., & Gresnigt, A. M. (2007). Failure of locally buckled pipelines. ASME Journal of Pressure Vessel Technology, 129, 272–279.

    Article  CAS  Google Scholar 

  • Dassault Systèmes. (2013). Abaqus Analysis User’s Guide, Abaqus FEA Version 6.13.

    Google Scholar 

  • de Jesus, A. M. P., Natal, R., Seabra, M., Pereira, J. C. R., & Fernandes, A. A. (2013). Ultra low cycle fatigue of steel under cyclic high strain loading conditions (Midterm Assessment Report) European Commission RFSR CT 2011 00029.

    Google Scholar 

  • Dhalla, A. K. (1987). Collapse characteristics of a thin-walled elbow. ASME Journal of Pressure Vessel Technology, 109, 394–401.

    Article  Google Scholar 

  • ECCS. (1986). Recommended testing procedure for assessing the behaviour of structural steel elements under cyclic loading. ECCS—Technical Committee 1—Structural Safety and Loadings, Technical Working Group 1.3—Seismic Design, Brussels, Belgium.

    Google Scholar 

  • Fujiwaka, T., Rndou, R., Furukawa, S., Ono, S., & Oketani, K. (1999). Study on strength of piping components under elastic-plastic behavior due to seismic loading . In PVP Conference (PVP-Vol 137). Seismic Engineering.

    Google Scholar 

  • Greenstreet, W. L. (1978). experimental study of plastic responses of pipe elbows (Report No. ORNL/NUREG-24). Contract No. W-7405-eng-26.

    Google Scholar 

  • Karamanos, S. A., Giakoumatos, E., & Gresnigt, A. M. (2003). Nonlinear response and failure of steel elbows under in-plane bending and pressure. ASME Journal of Pressure Vessel Technology, 125(4), 393–402.

    Article  CAS  Google Scholar 

  • Karamanos, S. A., Tsouvalas, D., & Gresnigt, A. M. (2006). Ultimate bending capacity and buckling of pressurized 90 deg steel elbows. ASME J. Pressure Vessel Technology, 128(3), 348–356.

    Article  CAS  Google Scholar 

  • Khan, A. S., & Huang, S. (1995). Continuum Theory of Plasticity. New York: Wiley.

    Google Scholar 

  • Martinez, X., Oller, S., Barbu, L., & Barbat, A. (2013). Analysis of ultra-low cycle fatigue problems with the Barcelona plastic damage model. In Computational Plasticity XII. Fundamentals and Applications (pp. 352–363). ISBN 978-84-941531-5-0.

    Google Scholar 

  • Martinez, X., Oller, S., Barbu, L., Barbat, A., & De Jesus, A. M. P. (2015). Analysis of ultra-low cycle fatigue problems with the Barcelona plastic damage model and a new isotropic hardening law. International Journal of Fatigue, 73, 132–142.

    Article  Google Scholar 

  • Ohata, M., & Toyoda, M. (2003). Damage concept for evaluating ductile cracking of steel structure subjected to large-scale cyclic straining. Science and Technology of Advanced Materials, 5, 241–249.

    Article  CAS  Google Scholar 

  • Pappa, P., Tsouvalas, D., Karamanos, S. A., & Houliara, S. (2008). Ultimate capacity of pipe bends under bending and pressure. In Offshore Mechanics and Arctic Engineering Conference. Estoril, Portugal: ASME Paper No. OMAE2008-57358.

    Google Scholar 

  • Pereira, J., Ruano, J., Schaffrath, S., de Jesus, A. M. P., Fernandes, A. A., & Feldmann, M. (2015). Ultra-low-cycle fatigue behaviour of full-scale elbows. In Proceedings of the ASME Pressure Vessels and Piping Conference, PVP2015, July 19–23, 2015. Boston, Massachusetts, USA.

    Google Scholar 

  • Ruano, J. (2015). Effect of thermal treatment in the ultra-low cycle fatigue behaviour of pipeline steels (MSc thesis, UTAD) (in Portuguese).

    Google Scholar 

  • Schaffrath, S., Eichler, B., & Feldmann, M. (2014a). Full scale tests of elbows under cycle loading (ULCF) (ULCF Internal Report). Germany: RWTH Aachen—Institute of Steel Construction.

    Google Scholar 

  • Schaffrath, S., Novokshanov, D., Eichler, B., & Münstermann, S. (2014b). Characterization and simulation of X60 elbow pipes in case of ULCF loading. In Proceedings of the 5th European Conference on Computational Mechanics (ECCM V).

    Google Scholar 

  • Shalaby, M. A., & Younan, M. Y. A. (1998). Limit loads for pipe elbows with internal pressure under in-plane closing bending moments. ASME Journal of Pressure Vessel Technology, 120(1), 35–42.

    Article  Google Scholar 

  • Slagis, G. C. (1998). Experimental data on seismic response of piping components. Journal of Pressure Vessel Technology, 120, 449–455.

    Article  Google Scholar 

  • Sobel, L. H., & Newman, S. Z. (1980). Comparison of experimental and simplified analytical results for the in-plane plastic bending and buckling of an elbow. ASME Journal of Pressure Vessel Technology, 102, 400–409.

    Article  Google Scholar 

  • Sobel, L. H., & Newman, S. Z. (1986). Simplified, detailed and isochronous analysis and test results for the in-plane elastic-plastic and creep behaviour of an elbow. ASME Journal of Pressure Vessel Technology, 108, 297–304.

    Article  Google Scholar 

  • Suzuki, N., & Nasu, M. (1989). Non-linear analysis of welded elbows subjected to in-plane bending. Computers and Structures, 32(3/4), 871–881.

    Article  Google Scholar 

  • Swanson Analysis Systems. (2011). ANSYS, Version 14.0. Houston.

    Google Scholar 

  • Tan, Y., Matzen, V. C., & Yu, L. X. (2002). Correlation of test and FEA results for the nonlinear behavior of straight pipes and elbows. ASME Journal of Pressure Vessel Technology, 124(4), 465–475.

    Article  CAS  Google Scholar 

  • Ucak, A., & Tsopelas, P. (2011). Constitutive model for cyclic response of structural steels with yield plateau. Journal of the Structural Engineering, 137(2), 195–206.

    Article  Google Scholar 

  • Varelis, G. E., Ferino, J., Karamanos, S. A., Lucci, A., & Demofonti, G. (2013a). Experimental and numerical investigation of pressurized pipe elbows under strong cyclic loading. In Pressure Vessel and Piping Conference, ASME, Paris, France, July 14–18 (p. V008T08A022). ASME Paper No. PVP2013-97977.

    Google Scholar 

  • Varelis, G. E., Karamanos, S. A., & Gresnigt, A. M. (2013b). Steel elbow response under strong cyclic loading. ASME Journal of Pressure Vessel Technology, 135(1), 011207.

    Article  Google Scholar 

  • Yahiaoui, K., Moffat, D. G., & Moreton, D. N. (1996). Response and cyclic strain accumulation of pressurized piping elbows under dynamic in-plane bending. Journal of Strain Analysis for Engineering Design, 31(2), 135–151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Augusto Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandes, A.A., de Jesus, A.M.P., Natal Jorge, R. (2018). Simulation of Cyclic Full-Scale Tests. In: Fernandes, A., Jesus, A., Natal Jorge, R. (eds) Monotonic and Ultra-Low-Cycle Fatigue Behaviour of Pipeline Steels. Springer, Cham. https://doi.org/10.1007/978-3-319-78096-2_8

Download citation

Publish with us

Policies and ethics