Skip to main content

Introduction

  • Chapter
  • First Online:
  • 543 Accesses

Abstract

The need to transport gas from far way regions to the final market drives the pipeline industry to engineer new transportation options; mandatory steps are improving pipe materials as well as developing validated and reliable design criteria and quick construction solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addessio, F. L., & Johnson, J. N. (1993). Rate-dependent ductile failure model. Journal of Applied Physics, 73, 1640–1648.

    Article  Google Scholar 

  • Anderson, T. L. (1995). Fracture Mechanics: Fundamentals and Applications (2nd ed., 688 pps) CRC Press INC: Boca Raton.

    Google Scholar 

  • Andrade, F. (2011). Non-local modelling of ductile damage (Ph.D. thesis). Universidade do Porto.

    Google Scholar 

  • Armero, F., & Oller, S. (2000). A general framework for continuum damage models I. Infinitesimal plastic damage models in stress space. International Journal of Solids and Structures, 37(48–50), 7409–7436.

    Article  Google Scholar 

  • Armstrong, P. J. & Frederick, C. O. (1966). A mathematical representation of the multiaxial Bauschinger effect. (CEGB Report No. RD/B/N 731). Central Electricity Generating Board.

    Google Scholar 

  • Atkins, A. G. (1997). Fracture mechanics and metal forming: damage mechanics and the local approach of yesterday and today. Fracture research in retrospect—an anniversary volume in honor of George R. Irwin’s 90’Th birthday, Rotterdam, Brookfield: A.A. Balkema.

    Google Scholar 

  • Bacchi, L., Pistone, V., & Villa, L. (2011). Safety of pipelines in landslide areas. In 18th Joint Technical Meeting on Pipeline Research, San Francisco.

    Google Scholar 

  • Bai, Y., & Wierzbicki, T. (2008). A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity, 24, 1071–1096.

    Article  CAS  Google Scholar 

  • Bao, Y., & Wierzbicki, T. (2004). On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 46, 81–98.

    Article  Google Scholar 

  • Bardet, J. P. (1990). Lode dependences for isotropic pressure-sensitive materials. ASME Journal of Applied Mechanics, 57, 498–506.

    Article  Google Scholar 

  • Barsoum, I. (2006) Ductile failure and rupture mechanisms in combined tension and shear. (Licentiate thesis No. 96). Stockholm, Sweden: KTH Solid Mechanics.

    Google Scholar 

  • Barsoum, I., & Faleskog, J. (2007). Rupture mechanisms in combined tension and shear-experiments. International Journal of Solids and Structures, 44(6), 1768–1786.

    Article  CAS  Google Scholar 

  • Bleck, W., Dahl, W., Nonn, A., Amlung, L., Feldmann, M., Schäfer, D., et al. (2009). Numerical and experimental analyses of damage behaviour of steel moment connection. Engineering Fracture Mechanics, 76(10), 1531–1547.

    Article  Google Scholar 

  • Bonora, N. (1999). Identification and measurement of ductile damage parameters. Journal of Strain Analysis for Engineering Design, 34, 463–478.

    Article  Google Scholar 

  • Bonora, N., Gentile, D., Pirondi, A., & Newaz, G. (2005). Ductile damage evolution under triaxial state of stress: Theory and experiments. International Journal of Plasticity, 21, 981–1007.

    Article  CAS  Google Scholar 

  • Bridgman, P. W. (1952). Studies in Large Plastic Flow and Fracture: With Special Emphasis on the Effects of Hydrostatic Pressure. New York: McGraw-Hill.

    Google Scholar 

  • Brozzo, P., De Luca, B., & Rendina, R. (1972) A new method for the prediction of formability in metal sheet, sheet metal forming and formability. In 7th Biennial Conference of the IDDRG, Amsterdam, The Netherlands, Oct. 9–13.

    Google Scholar 

  • Chaboche, J. L. (1984). Anisotropic creep damage in the framework of the continuum damage mechanics. Nuclear Engineering and Design, 79, 309–319.

    Article  Google Scholar 

  • Chun, B. K., Jinna, J. T., & Lee, J. K. (2002). Modeling the Bauschinger effect for sheet metals, part I: Theory. International Journal of Plasticity, 18, 571–595.

    Article  Google Scholar 

  • Clausing, D. P. (1970). Effect of plastic strain state on ductility and toughness. Int. J. Fract. Mech., 6, 71–85.

    Article  Google Scholar 

  • Cockcroft, M. G., & Latham, D. L. (1968). Ductility and the workability of metals. J. Inst. Metals, 96(1), 33–39.

    CAS  Google Scholar 

  • Coppola, T. & Demofonti, G. (2009). Numerical-experimental procedures to identify the ductile fracture strain limits in pipeline steels. In The 19th ISOPE, 2009, Osaka, Japan, June 21–26.

    Google Scholar 

  • Coppola, T., Cortese, L., & Folgarait, P. (2009). The effect of stress invariants on ductile fracture limit in steels. Engineering Fracture Mechanics, 76, 1288–1302.

    Article  Google Scholar 

  • Datsko, J., & Yang, C. T. (1960). Correlation of bendability of metals with their tensile properties. Trans. ASME, 82(4), 309–313.

    Google Scholar 

  • De Borst, R., & Giessen, E. (1998). Material Instabilities in Solids. New York: Wiley.

    Google Scholar 

  • Gao, X., Zhang, T., Hayden, M., & Roe, C. (2009). Effect of stress state on plasticity and ductile failure of an aluminium 5083 alloy. Int. Journal of Plasticity, 25, 2366–2382.

    Article  CAS  Google Scholar 

  • Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth. Part I: Yield criteria and flow rules for porous ductile media. Transactions ASME, Journal of Engineering Materials, 99, 2–15.

    Article  Google Scholar 

  • Hancock, J. W., & Mackenzie, A. C. (1976). On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. Journal of the Mechanics and Physics of Solids, 24(2), 147–160.

    Article  Google Scholar 

  • Ishikawa, N., Endo, S., Glover, A., Horsley, D., & Toyoda, M. (2003). Evaluation of ductile cracking criterion for grade X100 linepipe and transferability to large scale fracture behavior. In Proceedings of OMAE 2003, 22nd International Conference on Offshore Mechanics and Arctic Engineering, OMAE2003-37100.

    Google Scholar 

  • Ishikawa, N., Sueyoshi, H. & Igi, S. (2010) Application of damage mechanics modelling to strain based design with respect to ductile crack initiation. In Proceedings of the 8th International Pipeline Conference IPC2010 Canada.

    Google Scholar 

  • Kachanov, L. M. (1986). Introduction to continuum damage mechanics. Martinus Nijhoff Publishers.

    Book  Google Scholar 

  • Kanvinde, A. M., & Deierlein, G. G. (2007). Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue. Journal of Engineering Mechanics, 133(6), 701–712.

    Article  Google Scholar 

  • Kanvinde, A. M., Fell, B. V., & Deierlein, G. G. (2007). Physics-based continuum models by abaqus to simulate fracture and ultra low cycle fatigue in steel structures. Structural Engineering Research Frontiers, 249(33), 14 pages.

    Google Scholar 

  • Kassner, M. E., Geantil, P., Levine, L. E., & Larson, B. C. (2009). Backstress, the bauschinger effect and cyclic deformation. Materials Science Forum, 604–605, 39–51.

    Google Scholar 

  • Leblond, J. B., Perrin, G., & Devaux, J. (1995). An improved Gurson-type model for hardenable ductile metals. European Journal of Mechanics—A/Solids, 14, 499–527.

    Google Scholar 

  • Lemaitre, J. (1985). Coupled elasto-plasticity and damage constitutive equations. Computer methods in applied mechanics and engineering, 51(1–3), 31–49.

    Article  Google Scholar 

  • Lemaitre, J. (1996). A course on damage mechanics. New York: Springer.

    Book  Google Scholar 

  • Lemaitre, J., & Chaboche, J. L. (1990). Mechanics of Solid Materials. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lemaitre, J., & Desmorat, R. (2005). Engineering damage mechanics. New York: Springer.

    Google Scholar 

  • Li, H., Fu, M. W., Lu, J., & Yang, H. (2011). Ductile fracture: Experiments and computations. Int. Journal of Plasticity, 27, 147–180.

    Article  CAS  Google Scholar 

  • Lubliner, J. (2008) Plasticity Theory. Dover Publications.

    Google Scholar 

  • Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299–326.

    Article  Google Scholar 

  • Luccioni, B., Oller, S., & Danesi, R. (1996). Coupled plastic-damage model. Computational Methods for Applied Mechanics and Engineering, 129(1–2), 81–89.

    Article  Google Scholar 

  • McClintock, F. A. (1968). A criterion for ductile fracture by growth of holes. ASME Journal of Applied Mechanics, 35(2), 363–371.

    Article  Google Scholar 

  • McClintock, F. A. (1971). Plasticity aspects of fracture. In H. Liebowitz (Eds.), Fracture: an advanced treatise (Vol. 3., pp. 47–225). New York: Academic Press.

    Chapter  Google Scholar 

  • Myers, A., Deierlein, G. G., & Kanvinde, A. M. (2009). Testing and probabilistic simulation of ductile fracture initiation in structural steel components and weldments (Report No. 170). Stanford University, 353 pp.

    Google Scholar 

  • Needleman, A., & Tvergaard, V. (1987). An analysis of ductile rupture modes at a crack tip. Journal of the Mechanics and Physics of Solids, 35, 151–183.

    Article  Google Scholar 

  • Norris, D., Reaugh, J., Moran, B., & Quinnones, D. (1978). A plastic-strain mean-stress criterion for ductile fracture. Journal of Engineering Materials and Technology, 100(3), 279–286.

    Article  CAS  Google Scholar 

  • Ohata, M. & Toyoda, M. (2003) Application of equivalent damage concept to evaluation of ductile cracking for linepipe under large scale seismic loading. In Proceedings of OMAE03: 22nd International Conference on Offshore Mechanics and Arctic Engineering, Mexico.

    Google Scholar 

  • Ohata, M., & Toyoda, M. (2004). Damage concept for evaluating ductile cracking of steel structure subjected to large-scale cyclic straining. Science and Technology of Advanced Materials, 5(1–2), 241–249.

    Article  CAS  Google Scholar 

  • Oller, S. (2005). Dinámica no lineal. Barcelona, Spain: Ediciones CIMNE.

    Google Scholar 

  • Oller, S., Salomón, O., & Oñate, E. (2005). A continuum mechanics model for mechanical fatigue analysis. Computational Materials Science, 32(2), 175–195.

    Article  Google Scholar 

  • Ottosen, N. S. (1977). A failure criterion for concrete. ASCE. Journal Mechanics Engineering Division, 103(4), 527–535.

    Google Scholar 

  • Pereira, J. C. R. (2016). Characterization of X52, X60 and X65 steel grades under monotonic and ultra-low-cycle fatigue loading (Ph.D. thesis). University of Porto.

    Google Scholar 

  • Rice, J. R., & Tracey, D. M. (1969). On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids, 17(3), 201–217.

    Article  Google Scholar 

  • Salomón, O., Oller, S., Car, E. & Oñate, E., (1999). Thermomechanical fatigue analysis based on continuum mechanics. Congreso Argentino de Mecánica Computacional, MECOM’99, Mendoza, Argentina.

    Google Scholar 

  • Salomón, O., Oller, S. & Oñate, E. (2002) Fatigue analysis of materials and structures using a continuum damage model. International Journal of Forming Processes, 5(2–3-4): 493–503.

    Article  Google Scholar 

  • Simo, J. C., & Ju, J. W. (1987). Strain- and stress-based continuum damage models. Part I: Formulation. International Journal of Solids and Structures, 23(7), 821–840.

    Article  Google Scholar 

  • Suero, A. & Oller, S. (1998). Tratamiento del Fenómeno de Fatiga Mediante la Mecánica de Medios Continuos. Monografía CIMNE Nº 45, Barcelona.

    Google Scholar 

  • Toyoda, M., Ohata, M., Ayukawa, N., Ohwaki, G., Ueda, Y. & Takeuchi, I. (2000). Ductile fracture initiation behaviour of pipe under a large scale of cyclic bending. Proceedings Third International Pipeline ‎Technology Conference, Brugge, Belgium, Vol. 2, pp. 87–102.

    Google Scholar 

  • Tseng, N. T., & Lee, G. C. (1983). Simple plasticity model of the two-surface type. ASCE J. of Engineering Mechanics, 109, 795–810.

    Article  Google Scholar 

  • Varelis, G. E. (2010) Application of the Armstrong-Frederick Cyclic Plasticity Model for Simulating Structural Steel Member Behavior (Graduate Diploma Thesis). Department of Mechanical Engineering, University of Thessaly.

    Google Scholar 

  • Varelis, G. E. (2013). Numerical Simulation of Steel Members Response under Strong Cyclic Loading (Ph.D. Dissertation), Department of Mechanical Engineering, University of Thessaly, Greece.

    Google Scholar 

  • Wierzbicki, T., Xue, L. (2005). On the effect of the third invariant of the stress deviator on ductile fracture. (Impact and Crashworthiness Lab Report 136). Cambridge, MA: Massachusetts Institute of Technology.

    Google Scholar 

  • Wierzbicki, T., Bao, Y., Lee, Y.-W., & Bai, Y. (2005). Calibration and evaluation of seven fracture models. International Journal of Mechanical Sciences, 47, 719–743.

    Article  Google Scholar 

  • Xue, L. (2008). Constitutive modelling of void shearing effect in ductile fracture of porous materials. Engineering Fracture Mechanics, 75, 3343–3366.

    Article  Google Scholar 

  • Xue, L., & Wierzbicki, T. (2008). Ductile fracture initiation and propagation modeling using damage plasticity theory. Engineering Fracture Mechanics, 75, 3276–3293.

    Article  Google Scholar 

  • Yu, M. H. (2002). Advances in strength theories for materials under complex stress state in the 20th Century. Applied Mechanics Reviews, 55(3), R17–R26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Augusto Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandes, A.A., de Jesus, A.M.P., Natal Jorge, R. (2018). Introduction. In: Fernandes, A., Jesus, A., Natal Jorge, R. (eds) Monotonic and Ultra-Low-Cycle Fatigue Behaviour of Pipeline Steels. Springer, Cham. https://doi.org/10.1007/978-3-319-78096-2_1

Download citation

Publish with us

Policies and ethics