Skip to main content

Inductive Learning from State Transitions over Continuous Domains

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2017)

Abstract

Learning from interpretation transition (LFIT) automatically constructs a model of the dynamics of a system from the observation of its state transitions. So far, the systems that LFIT handles are restricted to discrete variables or suppose a discretization of continuous data. However, when working with real data, the discretization choices are critical for the quality of the model learned by LFIT. In this paper, we focus on a method that learns the dynamics of the system directly from continuous time-series data. For this purpose, we propose a modeling of continuous dynamics by logic programs composed of rules whose conditions and conclusions represent continuums of values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Experiments sources: http://tonyribeiro.fr/data/experiments/ILP_2017.zip.

References

  1. Allen, J.F.: An interval-based representation of temporal knowledge. IJCAI 81, 221–226 (1981)

    Google Scholar 

  2. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising hull and box consistency. In: Logic Programming: Proceedings of the 1999 International Conference on Logic Programming, pp. 230–244. MIT press (1999)

    Google Scholar 

  3. do Carmo Nicoletti, M., de Sá Lisboa, F.O.S., Hruschka, E.R.: Learning temporal interval relations using inductive logic programming. In: Hruschka, E.R., Watada, J., do Carmo Nicoletti, M. (eds.) INTECH 2011. CCIS, vol. 165, pp. 90–104. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22247-4_8

    Chapter  Google Scholar 

  4. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science, Formal Models and Sematics, vol. B-5, pp. 995–10725 (1990)

    MATH  Google Scholar 

  5. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), e124–e131 (2006)

    Article  Google Scholar 

  6. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7(3–4), 601–620 (2000)

    Article  Google Scholar 

  7. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Mach. Learn. 94(1), 51–79 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9(10), 770–780 (2008)

    Article  Google Scholar 

  9. Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings Bioinf. 4(3), 228–235 (2003)

    Article  Google Scholar 

  10. Martínez Martínez, D., Ribeiro, T., Inoue, K., Alenyà Ribas, G., Torras, V.: Learning probabilistic action models from interpretation transitions. In: Proceedings of the Technical Communications of the 31st International Conference on Logic Programming (ICLP 2015), pp. 1–14 (2015)

    Google Scholar 

  11. Nachman, I., Regev, A., Friedman, N.: Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20(suppl 1), i248–i256 (2004)

    Article  Google Scholar 

  12. Cloud, M.J., Moore, R.E., Kearfott, R.B.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics (2009)

    Google Scholar 

  13. Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning delayed influences of biological systems. Front. Bioeng. Biotechnol. 2, 81 (2015)

    Article  Google Scholar 

  14. Rodríguez, J.J., Alonso, C.J., Boström, H.: Learning first order logic time series classifiers: rules and boosting. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 299–308. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45372-5_29

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ribeiro, T. et al. (2018). Inductive Learning from State Transitions over Continuous Domains. In: Lachiche, N., Vrain, C. (eds) Inductive Logic Programming. ILP 2017. Lecture Notes in Computer Science(), vol 10759. Springer, Cham. https://doi.org/10.1007/978-3-319-78090-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78090-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78089-4

  • Online ISBN: 978-3-319-78090-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics