Skip to main content

Abstract

The QoS requirements of customers (such as maximum packet delay, packet loss, data rate, etc.) are fairly heterogeneous and depend on the set of applications being run at the mobile terminal. For instance, voice traffic needs a guaranteed data rate to ensure low latency, but they can tolerate high packet error rate without any discernible impact on the quality of the communication. On the other hand, TCP-based services such as email and file transfers work well with a best-effort service but require very low packet error rate. Therefore, the cellular traffic is usually characterized into multiple QoS classes based on the minimum data rate, maximum packet delay, and maximum packet error rate. Over the past few years, machine-to-machine (M2M) communications has become popular with multiple industrial, commercial, and residential smart applications such as industrial automation, smart grid, smart homes, etc. An M2M network comprises of very large number of networked sensing devices working together to provide smart services and applications. Recently, the idea of coexistence of M2M traffic along with traditional human-to-human (H2H) traffic in LTE network is also gaining momentum in the wireless industry. However, unlike the H2H cellular traffic, M2M traffic is uplink heavy with very small payload and stringent real-time service requirements. Thus the existing QoS solutions for cellular networks cannot be directly imported to M2M networks, and new QoS traffic classes need to be created. Hence, it is important to develop QoS-aware resource allocation schemes accounting for unique network topology, traffic characteristics, and QoS requirements of M2M network, which is the focus of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Wireless resources is an umbrella term comprising of spectral, energy, or computational resources available to the network.

References

  1. H. Shajaiah, A. Abdelhadi, C. Clancy, Introduction (Springer, Cham, 2018), pp. 1–18. Available: https://doi.org/10.1007/978-3-319-60540-1_1

    Google Scholar 

  2. Infonetics Research, Mobile VoIP subscribers will near 410 million by 2015; VoLTE still a long way off (2011). http://www.marketwired.com/press-release/infonetics-research-mobile-voip-subscribers-will-near-410-million-2015-volte-still-long-1573999.htm

  3. Nokia Siemens Networks, Understanding smartphone behavior in the network (2011). http://www.mforum.ru/arc/20110219_Smart_WhitePaper_MForum.pdf

  4. H. Ekstrom, QoS control in the 3GPP evolved packet system. IEEE Commun. Mag. 47(2), 76–83 (2009)

    Article  Google Scholar 

  5. G. Piro, L. Grieco, G. Boggia, P. Camarda, A two-level scheduling algorithm for QoS support in the downlink of LTE cellular networks, in Wireless Conference (EW) (2010)

    Google Scholar 

  6. H. Yin, S. Alamouti, OFDMA: a broadband wireless access technology, in IEEE Sarnoff Symposium (2006)

    Google Scholar 

  7. S. Qaiyum, I.A. Aziz, J.B. Jaafar, Analysis of big data and quality-of-experience in high-density wireless network, in 2016 3rd International Conference on Computer and Information Sciences (ICCOINS) (Aug. 2016), pp. 287–292

    Google Scholar 

  8. A. Ghosh, R. Ratasuk, Essentials of LTE and LTE-A (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  9. W. Stallings, Data and Computer Communications, 10th edn. (Prentice Hall, Upper Saddle River, 2013)

    Google Scholar 

  10. A. Larmo, M. Lindstrom, M. Meyer, G. Pelletier, J. Torsner, H. Wiemann, The LTE link-layer design. IEEE Commun. Mag. 47, 52–59 (2009)

    Article  Google Scholar 

  11. C. Ciochina, H. Sari, A review of OFDMA and single-carrier FDMA, in Wireless Conference (EW) (2010)

    Google Scholar 

  12. Z. Kbah, A. Abdelhadi, Resource allocation in cellular systems for applications with random parameters, in 2016 International Conference on Computing, Networking and Communications (ICNC) (Feb. 2016), pp. 1–5

    Google Scholar 

  13. T. Erpek, A. Abdelhadi, T.C. Clancy, Application-aware resource block and power allocation for LTE, in 2016 Annual IEEE Systems Conference (SysCon) (Apr. 2016), pp. 1–5

    Google Scholar 

  14. S. Ali, M. Zeeshan, A delay-scheduler coupled game theoretic resource allocation scheme for LTE networks, in Frontiers of Information Technology (FIT) (2011)

    Google Scholar 

  15. D. Fudenberg, J. Tirole, Nash equilibrium: multiple Nash equilibria, focal points, and Pareto optimality, in Game Theory (MIT Press, Cambridge, MA, 1991)

    Google Scholar 

  16. P. Ranjan, K. Sokol, H. Pan, Settling for less - a QoS compromise mechanism for opportunistic mobile networks, in SIGMETRICS Performance Evaluation (2011)

    Google Scholar 

  17. R. Johari, J. Tsitsiklis, Parameterized supply function bidding: equilibrium and efficiency. Oper. Res. 59, 1079–1089 (2011)

    Article  MathSciNet  Google Scholar 

  18. L.B. Le, E. Hossain, D. Niyato, D.I. Kim, Mobility-aware admission control with QoS guarantees in OFDMA femtocell networks, in 2013 IEEE International Conference on Communications (ICC) (June 2013), pp. 2217–2222

    Google Scholar 

  19. L. Chung, Energy efficiency of QoS routing in multi-hop wireless networks, in IEEE International Conference on Electro/Information Technology (EIT) (2010)

    Google Scholar 

  20. Policy and charging control architecture (Release 8), 3GPP, Technical Report, TS 23.203, 2012

    Google Scholar 

  21. 3GPP Technical Report 36.213, Physical layer procedures, www.3gpp.org

  22. 3GPP, UTRA and E-UTRA and EPC; UE conformance specification for UE positioning; Part 1: Conformance test specification, Technical Specification, Release 9 (Jan 2015)

    Google Scholar 

  23. 3GPP, Universal Terrestrial Radio Access (UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRA); Radio measurement collection for Minimization of Drive Tests (MDT); Overall description; Stage 2, TS, Release 10 (Jan 2015)

    Google Scholar 

  24. F. Li, Quality of service, traffic conditioning and resource management in universal mobile telecommunication system (UMTS), PhD Thesis, Department of Telematics, Norwegian University of Science and Technology (Jan 2003)

    Google Scholar 

  25. M. Alasti, B. Neekzad, J. Hui, R. Vannithamby, Quality of service in WiMAX and LTE networks [Topics in wireless communications]. IEEE Commun. Mag. 48, 104–111 (2010)

    Article  Google Scholar 

  26. J. Andrews, A. Ghosh, R. Muhamed, Fundamentals of WiMAX: Understanding Broadband Wireless Networking (Prentice Hall, Upper Saddle River, 2007)

    Google Scholar 

  27. Federal Communications Commission, Mobile broadband: the benefits of additional spectrum (2010). https://transition.fcc.gov/national-broadband-plan/mobile-broadband-paper.pdf

  28. Ixiacom, Quality of service (QoS) and policy management in mobile data networks, White paper (2010)

    Google Scholar 

  29. C. Dovrolis, D. Stiliadis, P. Ramanathan, Proportional differentiated services: delay differentiation and packet scheduling. IEEE/ACM Trans. Networking 10(1), 12–26 (2002)

    Article  Google Scholar 

  30. A. Sali, A. Widiawan, S. Thilakawardana, R. Tafazolli, B. Evans, Cross-layer design approach for multicast scheduling over satellite networks, in 2nd International Symposium on Wireless Communication Systems, 2005 (2005)

    Google Scholar 

  31. R. Braden, D. Clark, S. Shenker, Integrated Services in the Internet Architecture: An Overview (RFC Editor, United States, 1994)

    Google Scholar 

  32. R. Braden, L, Zhang, S. Berson, S. Herzog, S. Jamin, Resource ReSerVation Protocol (RSVP), IETF, RFC 2205 (September 1997)

    Google Scholar 

  33. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, An architecture of differentiated services, IETF RFC 2475 (December 1998)

    Google Scholar 

  34. K. Nahrstedt, J.M. Smith, The QoS broker. IEEE Multimedia 2, 53–67 (1995)

    Article  Google Scholar 

  35. E. Lutz, D. Cygan, M. Dippold, F. Dolainsky, W. Papke, The land mobile satellite communication channel-recording, statistics, and channel model. IEEE Trans. Veh. Technol. 40, 375–386 (1991)

    Article  Google Scholar 

  36. H. Perros, K. Elsayed, Call admission control schemes: a review. IEEE Commun. Mag. 34(11), 82–91 (1994)

    Article  Google Scholar 

  37. I. Jung, I. Jo, Y. Yu, H. Eom, H. Yeom, Enhancing QoS and energy efficiency of realtime network application on smartphone using cloud computing, in IEEE Asia-Pacific Services Computing Conference (APSCC) (2011)

    Google Scholar 

  38. G. Gorbil, I. Korpeoglu, Supporting QoS traffic at the network layer in multi-hop wireless mobile networks, in Wireless Communications and Mobile Computing Conference (IWCMC) (2011)

    Google Scholar 

  39. M. Ghorbanzadeh, A. Abdelhadi, C. Clancy, Utility functions and radio resource allocation, in Cellular Communications Systems in Congested Environments (Springer, Berlin, 2017), pp. 21–36

    Google Scholar 

  40. H. Kushner, P. Whiting, Convergence of proportional-fair sharing algorithms under general conditions. IEEE Trans. Wirel. Commun. 3, 1250–1259 (2004)

    Article  Google Scholar 

  41. G. Tychogiorgos, A. Gkelias, K. Leung, Utility proportional fairness in wireless networks, in IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (2012)

    Google Scholar 

  42. M. Li, Z. Chen, Y. Tan, A MAXMIN resource allocation approach for scalable video delivery over multiuser MIMO-OFDM systems, in IEEE International Symposium on Circuits and Systems (ISCAS) (2011)

    Google Scholar 

  43. T. Nandagopal, T. Kim, X. Gao, V. Bharghavan, Achieving MAC layer fairness in wireless packet networks, in Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (MOBICOM) (2000)

    Google Scholar 

  44. F. Kelly, A. Maulloo, D. Tan, Rate control in communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49, 237–252 (1998)

    Article  Google Scholar 

  45. A. Demers, S. Keshav, S. Shenker, Analysis and simulation of a fair queueing algorithm. SIGCOMM Comput. Commun. Rev. 19(4), 1–12 (1989). http://doi.acm.org/10.1145/75247.75248 (1989)

    Article  Google Scholar 

  46. R. Kurrle, Resource allocation for smart phones in 4G LTE advanced carrier aggregation, Master Thesis, Virginia Tech, 2012

    Google Scholar 

  47. J. Lee, R. Mazumdar, N. Shroff, Downlink power allocation for multi-class wireless systems. IEEE/ACM Trans. Networking 13, 854–867 (2005)

    Article  Google Scholar 

  48. A. Abdelhadi, A. Khawar, T.C. Clancy, Optimal downlink power allocation in cellular networks. Phys. Commun. 17, 1–14 (2015)

    Article  Google Scholar 

  49. M. Ghorbanzadeh, A. Abdelhadi, C. Clancy, Centralized resource allocation, in Cellular Communications Systems in Congested Environments (Springer, Berlin, 2017), pp. 37–60

    Google Scholar 

  50. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  51. D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Academic, New York, 1982)

    MATH  Google Scholar 

  52. M. Ghorbanzadeh, A. Abdelhadi, C. Clancy, Resource allocation architectures traffic and sensitivity analysis, in Cellular Communications Systems in Congested Environments (Springer, Berlin, 2017), pp. 93–116

    Google Scholar 

  53. M. Ghorbanzadeh, A. Abdelhadi, C. Clancy, Delay-based backhaul modeling, in Cellular Communications Systems in Congested Environments (Springer, Berlin, 2017), pp. 179–240

    Google Scholar 

  54. Technical Specification Group Services and System Aspects, Policy and charging control architecture, 3GPP, Technical Report, TS 23.203 V8.9.0, March 2010

    Google Scholar 

  55. Qualcomm, M2M White Paper: the growth of device connectivity, The FocalPoint Group, Technical Report, May 2010

    Google Scholar 

  56. A. Kumar, A. Abdelhadi, T.C. Clancy, A delay optimal MAC and packet scheduler for heterogeneous M2M uplink. CoRR, vol. abs/1606.06692 (2016)

    Google Scholar 

  57. I. Leyva-Mayorga, L. Tello-Oquendo, V. Pla, J. Martinez-Bauset, V. Casares-Giner, Performance analysis of access class barring for handling massive M2M traffic in LTE-A networks, in IEEE International Conference on Communications (ICC) (May 2016), pp. 1–6

    Google Scholar 

  58. T.P.C. de Andrade, C.A. Astudillo, N.L.S. da Fonseca, Impact of M2M traffic on human-type communication users on the LTE uplink channel, in IEEE Latin-American Conference on Communications (LATINCOM) (Nov. 2015), pp. 1–6

    Google Scholar 

  59. A. Abdel-Hadi, S. Vishwanath, On multicast interference alignment in multihop systems, in IEEE Information Theory Workshop 2010 (ITW 2010) (2010)

    Google Scholar 

  60. S. Gao, M. Tao, Energy-efficient resource allocation for multiple description coding based multicast services in OFDMA networks, in 2016 IEEE/CIC International Conference on Communications in China (ICCC) (July 2016), pp. 1–6

    Google Scholar 

  61. S. Chieochan, E. Hossain, Downlink media streaming with wireless fountain coding in wireline-cum-WiFi networks. Wirel. Commun. Mob. Comput. 12(17), 1567–1579 (2012). Available: http://dx.doi.org/10.1002/wcm.1092

    Article  Google Scholar 

  62. S. Chieochan, E. Hossain, Network coding for unicast in a WiFi hotspot: promises, challenges, and testbed implementation. Comput. Netw. 56(12), 2963–2980 (2012). Available: http://dx.doi.org/10.1016/j.comnet.2012.05.006

    Article  Google Scholar 

  63. G. Tychogiorgos, A. Gkelias, K. Leung, A new distributed optimization framework for hybrid adhoc networks, in GLOBECOM Workshops (2011)

    Google Scholar 

  64. Y. Wang, K. Pedersen, P. Mogensen, T. Sorensen, Resource allocation considerations for multi-carrier LTE-advanced systems operating in backward compatible mode, in IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, 2009 (2009), pp. 370–374

    Google Scholar 

  65. H. Shajaiah, A. Abdelhadi, C. Clancy, Utility proportional fairness resource allocation with carrier aggregation in 4G-LTE, in IEEE Military Communications Conference (MILCOM) (2013)

    Google Scholar 

  66. H. Shajaiah, A. Abdelhadi, T.C. Clancy, An efficient multi-carrier resource allocation with user discrimination framework for 5G wireless systems. Int. J. Wirel. Inf. Netw. 22(4), 345–356 (2015)

    Article  Google Scholar 

  67. H. Shajaiah, A. Abdelhadi, C. Clancy, Conclusion and Future Trajectory (Springer, Cham, 2018), pp. 189–191. Available: https://doi.org/10.1007/978-3-319-60540-1_8

    Google Scholar 

  68. Executive Office of the President, President’s Council of Advisors on Science and Technology (PCAST), Realizing the full potential of government-held spectrum to spur economic growth, in Maximizing The Wireless Spectrum For Economic Growth, pp. 1–158 (2013)

    Google Scholar 

  69. H. Shajaiah, A. Abdelhadi, C. Clancy, A price selective centralized algorithm for resource allocation with carrier aggregation in LTE cellular networks, in 2015 IEEE Wireless Communications and Networking Conference (WCNC) (Mar. 2015), pp. 813–818

    Google Scholar 

  70. H. Shajaiah, A. Abdelhadi, C. Clancy, Multi-Stage Resource Allocation with Carrier Aggregation (Springer, Cham, 2018), pp. 25–62. Available: https://doi.org/10.1007/978-3-319-60540-1_3

    Google Scholar 

  71. M. Richards, J. Scheer, W. Holm, Principles of Modern Radar, 1st edn. (Scitech Publishing, Edison, NJ, 2010)

    Google Scholar 

  72. Federal Communications Commission (FCC), In the matter of revision of parts 2 and 15 of the commission rules to permit unlicensed national information infrastructure (U-NII) devices in the 5 GHz band, MO&O, ET Docket No. 03-122, June 2006

    Google Scholar 

  73. NTIA, NTIA Identifies 3450-3550 MHz for study as potential band for wireless broadband use (Feb 2018)

    Google Scholar 

  74. M. Ghorbanzadeh, A. Abdelhadi, C. Clancy, A utility proportional fairness resource allocation in spectrally radar-coexistent cellular networks, in IEEE Military Communications Conference, Baltimore, MD, pp. 1498–1503 (2014)

    Google Scholar 

  75. NTIA, An assessment of the near-term viability of accommodating wireless broadband systems in the 1675–1710 MHz, 1755–1780 MHz, 3500–3650 MHz, 4200–4220 MHz and 4380–4400 MHz bands (Nov. 2010). https://www.ntia.doc.gov/report/2010/assessment-near-term-viability-accommodating-wireless-broadband-systems-1675-1710-mhz-17

  76. H. Shajaiah, A. Abdelhadi, C. Clancy, Utility Proportional Fairness Resource Block Scheduling with Carrier Aggregation (Springer, Cham, 2018), pp. 173–188. Available: https://doi.org/10.1007/978-3-319-60540-1_7

    Google Scholar 

  77. A. Lackpour, M. Luddy, J. Winters, Overview of interference mitigation techniques between WiMAX networks and ground based radar, in 2011 20th Annual Wireless and Optical Communications Conference (WOCC), Newark, NJ, pp. 1–5 (2011)

    Google Scholar 

  78. Z. Khan, J.J. Lehtomaki, R. Vuohtoniemi, E. Hossain, L.A. Dasilva, On opportunistic spectrum access in radar bands: lessons learned from measurement of weather radar signals. IEEE Wirel. Commun. 23(3), 40–48 (2016)

    Article  Google Scholar 

  79. M. Ghorbanzadeh, A. Abdelhadi, C. Clancy, A utility proportional fairness bandwidth allocation in radar-coexistent cellular networks, in Military Communications Conference (MILCOM) (2014)

    Google Scholar 

  80. H. Shajaiah, A. Abdelhadi, C. Clancy, Resource Allocation with Carrier Aggregation for Commercial Use of 3.5 GHz Spectrum (Springer, Cham, 2018), pp. 133–151. Available: https://doi.org/10.1007/978-3-319-60540-1_5

    Google Scholar 

  81. A. Abdelhadi, C. Clancy, A utility proportional fairness approach for resource allocation in 4G-LTE, in IEEE International Conference on Computing, Networking, and Communications (ICNC), CNC Workshop (2014)

    Google Scholar 

  82. Y. Wang, A. Abdelhadi, A QoS-based power allocation for cellular users with different modulations, in 2016 International Conference on Computing, Networking and Communications (ICNC) (Feb. 2016), pp. 1–5

    Google Scholar 

  83. T.V. Landegem, H. Viswanatha, Anywhere, anytime, immersive communication. Enriching Commun. 2, 1–6 (2008)

    Google Scholar 

  84. M. Ghorbanzadeh, A. Abdelhadi, C. Clancy, Distributed resource allocation, in Cellular Communications Systems in Congested Environments (Springer, Berlin, 2017), pp. 61–91

    Google Scholar 

  85. S.Y. Lien, K.C. Chen, Y. Lin, Toward ubiquitous massive accesses in 3GPP machine-to-machine communications. IEEE Commun. Mag. 49(4), 66–74 (2011)

    Article  Google Scholar 

  86. S.Y. Lien, K.C. Chen, Massive access management for QoS guarantees in 3GPP machine-to-machine communications. IEEE Commun. Lett. 15(3), 311–313 (2011)

    Article  Google Scholar 

  87. A. Gotsis, A. Lioumpas, A. Alexiou, Evolution of packet scheduling for machine-type communications over LTE: algorithmic design and performance analysis, in IEEE Globecom Workshop (Dec. 2012), pp. 1620–1625

    Google Scholar 

  88. G. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications, 3rd edn. (Springer, New York, 2011)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Abdelhadi, A., Clancy, T.C. (2018). Introduction. In: Design and Implementation of Practical Schedulers for M2M Uplink Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-78081-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78081-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78080-1

  • Online ISBN: 978-3-319-78081-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics