Skip to main content

Parallel Exact Diagonalization Approach to Large Molecular Nanomagnets Modelling

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10778))

  • 1036 Accesses

Abstract

The exact diagonalization method is used to calculate the energy levels of ring-shaped molecular nanomagnets of different sizes and spin numbers. Two-level hybrid parallelization is used to increase the efficiency and obtain the optimally balanced workload. The results of the successful runs of our application on two Tier-0 supercomputers are presented with emphasis on the satisfactory speedup obtained by threading the diagonalization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antkowiak, M., Kozłowski, P., Kamieniarz, G.: Zero temperature magnetic frustration in nona-membered s = 3/2 spin rings with bond defect. Acta Phys. Pol. A 121, 1102–1104 (2012)

    Article  Google Scholar 

  2. Antkowiak, M., Kozłowski, P., Kamieniarz, G., Timco, G., Tuna, F., Winpenny, R.: Detection of ground states in frustrated molecular rings by in-field local magnetization profiles. Phys. Rev. B 87, 184430 (2013)

    Article  Google Scholar 

  3. Antkowiak, M., Kucharski, Ł., Kamieniarz, G.: Genetic algorithm and exact diagonalization approach for molecular nanomagnets modelling. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 312–320. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_29

    Chapter  Google Scholar 

  4. Ardavan, A., Rival, O., Morton, J., Blundell, S., Tyryshkin, A., Timco, G., Winpenny, R.: Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007)

    Article  Google Scholar 

  5. Baker, M., Timco, G., Piligkos, S., Mathieson, J., Mutka, H., Tuna, F., Kozłowski, P., Antkowiak, M., Guidi, T., Gupta, T., Rath, H., Woolfson, R., Kamieniarz, G., Pritchard, R., Weihe, H., Cronin, L., Rajaraman, G., Collison, D., McInnes, E., Winpenny, R.: A classification of spin frustration in molecular magnets from a physical study of large odd-numbered-metal, odd electron rings. P. Natl. Acad. Sci. USA 109(47), 19113–19118 (2012)

    Article  Google Scholar 

  6. Cador, O., Gatteschi, D., Sessoli, R., Barra, A.L., Timco, G., Winpenny, R.: Spin frustration effects in an oddmembered antiferromagnetic ring and the magnetic Möbius strip. J. Magn. Magn. Mater. 290–291, 55 (2005)

    Article  Google Scholar 

  7. Florek, W., Kaliszan, L.A., Jaśniewicz-Pacer, K., Antkowiak, M.: Numerical analysis of magnetic states mixing in the heisenberg model with the dihedral symmetry. In: EPJ Web of Conferences, vol. 40, p. 14003 (2013). https://doi.org/10.1051/epjconf/20134014003

  8. Gatteschi, D., Sessoli, R., Villain, J.: Molecular Nanomagnets. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  9. Georgeot, B., Mila, F.: Chirality of triangular antiferromagnetic clusters as qubit. Phys. Rev. Lett. 104, 200502 (2010)

    Article  Google Scholar 

  10. Graham, R.: Bounds of multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 416–429 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hoshino, N., Nakano, M., Nojiri, H., Wernsdorfer, W., Oshio, H.: Templating odd numbered magnetic rings: oxovanadium heptagons sandwiched by \(\beta \)-cyclodextrins. J. Am. Chem. Soc. 131, 15100 (2009)

    Article  Google Scholar 

  12. Kamieniarz, G., Florek, W., Antkowiak, M.: Universal sequence of ground states validating the classification of frustration in antiferromagnetic rings with a single bond defect. Phys. Rev. B 92, 140411(R) (2015)

    Article  Google Scholar 

  13. Kamieniarz, G., Kozłowski, P., Antkowiak, M., Sobczak, P., Ślusarski, T., Tomecka, D., Barasiński, A., Brzostowski, B., Drzewiński, A., Bieńko, A., Mroziński, J.: Anisotropy, geometric structure and frustration effects in molecule-based nanomagnets. Acta Phys. Pol. A 121, 992–998 (2012)

    Article  Google Scholar 

  14. Kozłowski, P., Antkowiak, M., Kamieniarz, G.: Frustration signatures in the anisotropic model of a nine-spin \(s=3/2\) ring with bond defect. J. Nanopart. Res. 13(11), 6093–6102 (2011)

    Article  Google Scholar 

  15. Kozłowski, P., Musiał, G., Antkowiak, M., Gatteschi, D.: Effective parallelization of quantum simulations: nanomagnetic molecular rings. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8385, pp. 418–427. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55195-6_39

    Chapter  Google Scholar 

  16. Lehmann, J., Gaita-Ariño, A., Coronado, E., Loss, D.: Spin qubits with electrically gated polyoxometalate molecules. Nature Nanotech. 2, 312 (2007)

    Article  Google Scholar 

  17. Mannini, M., Pineider, F., Sainctavit, P., Danieli, C., Otero, E., Sciancalepore, C., Talarico, A., Arrio, M.A., Cornia, A., Gatteschi, D., Sessoli, R.: Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nature Mat. 8, 194 (2009)

    Article  Google Scholar 

  18. Timco, G., Carretta, S., Troiani, F., Tuna, F., Pritchard, R., Muryn, C., McInnes, E., Ghirri, A., Candini, A., Santini, P., Amoretti, G., Affronte, M., Winpenny, R.: Engineering the coupling between molecular spin qubits by coordination chemistry. Nature Nanotech. 4, 173–178 (2009)

    Article  Google Scholar 

  19. Yao, H., Wang, J., Ma, Y., Waldmann, O., Du, W., Song, Y., Li, Y., Zheng, L., Decurtins, S., Xin, X.: An iron(III) phosphonate cluster containing a nonanuclear ring. Chem. Commun. 16, 1745–1747 (2006)

    Article  Google Scholar 

  20. Cray XC40 (Hazel Hen). https://www.hlrs.de/en/systems/cray-xc40-hazel-hen/

  21. MareNostrum. https://www.bsc.es/innovation-and-services/supercomputers-and-facilities/marenostrum

  22. ScaLAPACK – Scalable Linear Algebra PACKage. http://www.netlib.org/scalapack/

  23. The Message Passing Interface (MPI) Standard. http://www.mcs.anl.gov/research/projects/mpi/

Download references

Acknowledgments

We acknowledge PRACE for awarding us access to resource MareNostrum based in Spain at Barcelona Supercomputing Center as well as Hazel Hen in Germany at High Performance Computing Center Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Antkowiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antkowiak, M. (2018). Parallel Exact Diagonalization Approach to Large Molecular Nanomagnets Modelling. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10778. Springer, Cham. https://doi.org/10.1007/978-3-319-78054-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78054-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78053-5

  • Online ISBN: 978-3-319-78054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics