Skip to main content

Hip-Spine Effect: Hip Pathology Contributing to Lower Back, Posterior Hip, and Pelvic Pain

Abstract

Lumbar back pain symptoms affect nearly 80% of the global population. Current methods for diagnosis and treatment consider the lower back pain as a localized pathology based on patient complaints. A “kinematic chain” approach integrates a global sequence of how abnormal pathology is directly related to primary pain generation. The hip joint is the center axis for body movement. Any deviations in normal anatomy or function can directly influence body movement.

Ischiofemoral impingement, femoroacetabular impingement, and femoral version are hip diseases commonly diagnosed in orthopedic practice. Current treatment methods have been developed without a comprehensive knowledge of the inherent biomechanics associated with each pathology. To study these biomechanical changes, cadaveric models have been developed to simulate the abnormal anatomic discrepancies. The cadaveric model, as opposed to a computer simulation, was chosen based on the intricate relationship of the musculotendinous and ligamentous constraints associated with the lumbopelvic complex. The cadaveric model also allows for a direct translational approach of the measurement techniques as it accounts for deviations in the normal population.

Keywords

  • Hip-spine
  • Lower back pain
  • Posterior hip and pelvic pain
  • Limited hip extension
  • Ischiofemoral impingement
  • Femoral version
  • Femoroacetabular impingement

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-78040-5_2
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-78040-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9

References

  1. Huijbregts P. Lumbopelvic region: anatomy and biomechanics. In: Wadsworth C, editor. HSC 112 current concepts of orthopaedic physical therapy. LaCrosse, WI: Orthopaedic Section APTA; 2001.

    Google Scholar 

  2. Filler AG. Piriformis and related entrapment syndromes: diagnosis & management. Neurosurg Clin N Am. 2008;19(4):609–22.

    Google Scholar 

  3. Offierski CM, Macnab MB. Hip-spine syndrome. Spine (Phila Pa 1976). 1983;8(3):316–21.

    CrossRef  CAS  Google Scholar 

  4. Devin CJ, Mccullough KA, Morris BJ, Yates AJ, Kang JD. Hip-spine syndrome. J Am Acad Orthop Surg. 2012;20:434–42.

    CrossRef  PubMed  Google Scholar 

  5. Buckland AJ, Miyamoto R, Patel RD, Slover J, Razi AE. Differentiating hip pathology from lumbar spine pathology: key points of evaluation and management. J Am Acad Orthop Surg. 2017;25(2):23–34.

    Google Scholar 

  6. Ben-galim P, Ben-galim T, Rand N, et al. Hip-spine syndrome the effect of total hip replacement surgery on low back pain in severe osteoarthritis of the hip. Spine (Phila Pa 1976). 2007;32(19):2099–102.

    Google Scholar 

  7. Fogel GR, Esses SI. Hip spine syndrome: management of coexisting radiculopathy and arthritis of the lower extremity. Spine J. 2003;3:238–41.

    CrossRef  PubMed  Google Scholar 

  8. Matsuyama Y, Hasegawa Y, Yoshihara H, et al. Hip-spine syndrome: total sagittal alignment of the spine and clinical symptoms in patients with bilateral congenital hip dislocation. Spine (Phila Pa 1976). 2004;29(21):2432.

    Google Scholar 

  9. Redmond JM, Gupta A, Hammarstedt JE, Stake CE, Domb BG. The hip-spine syndrome: how does back pain impact the indications and outcomes of hip arthroscopy? Arthroscopy. 2014;30(7):872–81.

    Google Scholar 

  10. Lejkowski PM, Poulsen E. Elimination of intermittent chronic low back pain in a recreational golfer following improvement of hip range of motion impairments. J Bodyw Mov Ther. 2013;17(4):448–52.

    Google Scholar 

  11. Gebhart JJ, Weinberg DS, Conry KT, Morris WZ, Sasala LM, Liu RW. Hip-spine syndrome: is there an association between markers for cam deformity and osteoarthritis of the lumbar spine? Arthroscopy. 2016;32(11):1–6.

    CrossRef  Google Scholar 

  12. Lamontagne M, Kennedy MJ, Beaulé PE. The effect of cam FAI on hip and pelvic motion during maximum squat. Clin Orthop Relat Res. 2009;467(3):645–50.

    Google Scholar 

  13. Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112–20.

    Google Scholar 

  14. Goodman DA, Feighan JE, Smith AD, Latimer B, Buly RL, Cooperman DR. Subclinical slipped capital femoral epiphysis. Relationship to osteoarthrosis of the hip. J Bone Joint Surg Am. 1997;79(10):1489–97.

    Google Scholar 

  15. Ito K, Leunig M, Ganz R. Histopathologic features of the acetabular labrum in femoroacetabular impingement. Clin Orthop Relat Res. 2004;429:262–71.

    Google Scholar 

  16. Murray RO, Duncan C. Athletic activity in adolescence as an etiological factor in degenerative hip disease. J Bone Joint Surg Am. 1971;53(B(3)):406–19.

    Google Scholar 

  17. Schröder RG, Reddy M, Hatem MA, et al. A MRI study of the lesser trochanteric version and its relationship to proximal femoral osseous anatomy. J Hip Preserv Surg. 2015;2(4):410–6.

    Google Scholar 

  18. Torriani M, Souto SCL, Thomas BJ, Ouellette H, M a B. Ischiofemoral impingement syndrome: an entity with hip pain and abnormalities of the quadratus femoris muscle. AJR Am J Roentgenol. 2009;193(1):186–90.

    Google Scholar 

  19. Gómez-Hoyos J, Martin RRL, Schröder R, Palmer IJ, Martin HD. Accuracy of two clinical tests for ischiofemoral impingement in patients with posterior hip pain and endoscopically confirmed diagnosis. Arthroscopy. 2015:1–6.

    Google Scholar 

  20. Gómez-Hoyos J, Khoury AN, Schröder R, Johnson E, Palmer IJ, Martin HD. The hip-spine effect: a biomechanical study of ischiofemoral impingement effect on lumbar facet joints. Arthroscopy. 2016;33(1):101–7.

    Google Scholar 

  21. Popovich JM, Welcher JB, Hedman TP, et al. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity. Spine J. 2013;13(11):1581–9.

    Google Scholar 

  22. Jaumard NV, Welch WC, Winkelstein BA. Spinal facet joint biomechanics and mechanotransduction in normal, injury and degenerative conditions. J Biomech Eng. 2011;133(7):71010.

    Google Scholar 

  23. Yang KH, King AI. Mechanism of facet load transmission as a hypothesis for low-back pain. Spine (Phila Pa 1976). 1984;9(6):557–65.

    Google Scholar 

  24. Kalichman L, Hunter DJ. Lumbar facet joint osteoarthritis: a review. Semin Arthritis Rheum. 2007;37:69–80.

    Google Scholar 

  25. Elder BD, Vigneswaran K, Athanasiou KA, Kim DH. Biomechanical, biochemical, and histological characterization of canine lumbar facet joint cartilage NIH public access. Neurosurgery. 2010;66(4):722–7.

    Google Scholar 

  26. Haher TR, O’Brien M, Dryer JW, Nucci R, Zipnick R, Leone DJ. The role of the lumbar facet joints in spinal stability. Identification of alternative paths of loading. Spine (Phila Pa 1976). 1994;19(23):2667–70, discussion 2671.

    Google Scholar 

  27. McLain RF. Mechanoreceptor endings in human cervical facet joints. Spine (Phila Pa 1976). 1994;19(5):495–501.

    Google Scholar 

  28. Vandenabeele F, Creemers J, Lambrichts I, Lippens P, Jans M. Encapsulated Ruffini-like endings in human lumbar facet joints. J Anat. 1997;191:571–83.

    Google Scholar 

  29. McLain RF, Pickar JG. Mechanoreceptor endings in human thoracic and lumbar facet joints. Spine (Phila Pa 1976). 1998;23(2):168–73.

    Google Scholar 

  30. Chen C, Lu Y, Kallakuri S, Patwardhan A, Cavanaugh JM. Distribution of A-δ and C-fiber receptors in the cervical facet joint capsule and their response to stretch. J Bone Joint Surg Am. 2006;88(A):1807–16.

    Google Scholar 

  31. Miller F, Merlo M, Liang Y, Kupcha P, Jamison J, Harcke HT. Femoral version and neck shaft angle. J Pediatr Orthop. 1993;12:382–8.

    CrossRef  Google Scholar 

  32. Tonnis D, Heinecke A. Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg Am. 1999;81(12):1747–70.

    CrossRef  CAS  PubMed  Google Scholar 

  33. Gulan G, Matovinovi D, Nemec B, Rubini D, Ravli J. Femoral neck anteversion: values, development, measurement, common problems. Coll Antropol. 2000;24(2):521–7.

    PubMed  CAS  Google Scholar 

  34. Murphy SB, Simon SR, Kijewski PK, Wilkinson RH, Griscom NT. Femoral anteversion. J Bone Joint Surg Am. 1987;69(8):1169–76.

    Google Scholar 

  35. Krebs DE, Robbins CE, Lavine L, Mann RW. Hip biomechanics during gait. J Orthop Sports Phys Ther. 1998;28(1):51–9.

    Google Scholar 

  36. Gomez-Hoyos J, Khoury A, Schroder R, Marquez-arabia W, Palmer I, Martin H. The hip-spine effect part II: a biomechanical study of abnormal femoral neck version and the iliofemoral ligament effect on lumbar facet joint load. Arthroscopy. 2016. Submitted.

    Google Scholar 

  37. Martin H, Khoury A, Gomez-Hoyos J, Helal A, Fincher C, Jones A. Outcomes of femoral derotational osteotomy for decreased femoral anteversion: a case series. Santiago: International Society for Hip Arthroscopy; 2017.

    Google Scholar 

  38. Levangie PK, Norkin CC. Joint structure and function: a comprehensive analysis. 5th ed. Philadelphia: F.A. Davis; 2011.

    Google Scholar 

  39. Lazennec JY, Rousseau MA, Riwan F, et al. Relations hanche rachis: consequences fonctionnelles; applications aux arthroplasties totales de hanche. In: Le complexe lombo-pelvien De l’anatomie a la pathologie. Montpellier: Sauramps Medical; 2005. p. 115–45.

    Google Scholar 

  40. Husson J-L, Mallet J-F, Huten D, Odri G-A, Morin C, Parent H-F. The lumbar-pelvic-femoral complex: applications in hip pathology. Orthop Traumatol Surg Res. 2010;96(4):S10–6.

    Google Scholar 

  41. Martin HD, Savage A, Braly BA, Palmer IJ, Beall DP, Kelly B. The function of the hip capsular ligaments: a quantitative report. Arthroscopy. 2008;24(2):188–95.

    Google Scholar 

  42. Birmingham PM, Kelly BT, Jacobs R, McGrady L, Wang M. The effect of dynamic femoroacetabular impingement on pubic symphysis motion: a cadaveric study. Am J Sports Med. 2012;40(5):1113–8.

    Google Scholar 

  43. Kim SH, Kwon OY, Yi CH, Cynn HS, Ha SM, Park KN. Lumbopelvic motion during seated hip flexion in subjects with low-back pain accompanying limited hip flexion. Eur Spine J. 2014;23(1):142–8.

    Google Scholar 

  44. Ellison JB, Rose SJ, Sahrmann SA. Patterns of hip rotation range of motion: a comparison between healthy subjects and patients with low back pain. Phys Ther. 1990;70(9):537–41.

    Google Scholar 

  45. Esola MA, McClure PW, Fitzgerald GK, Siegler S. Analysis of lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain. Spine (Phila Pa 1976). 1996;21(1):71–8.

    Google Scholar 

  46. Sung PS. A compensation of angular displacements of the hip joints and lumbosacral spine between subjects with and without idiopathic low back pain during squatting. J Electromyogr Kinesiol. 2013;23:741–5.

    Google Scholar 

  47. Vad VB, Bhat AL, Basrai D, Gebeh A, Aspergren DD, Andrews JR. Low back pain in professional golfers the role of associated hip and low back range-of-motion deficits. Am J Sports Med. 2004;32(2):494–7.

    Google Scholar 

  48. Khoury A, Gomez-Hoyos J, Yeramaneni S, Martin HD. Biomechanical effect of anterior hip impingement on lumbar intradiscal pressure. Santiago: International Society for Hip Arthroscopy; 2017.

    Google Scholar 

  49. Shacklock M. Neurodynamics. Physiotherapy. 1995;81(1):9–16.

    CrossRef  Google Scholar 

  50. Martin HD, Khoury AN, Schroder R, et al. The effects of hip abduction on sciatic nerve biomechanics during terminal hip flexion. J Hip Preserv Surg. 2017;4(2):178–86.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  51. Merolli A, Mingarelli L, Rocchi L. A more detailed mechanism to explain the “bands of Fontana” in peripheral nerves. Muscle Nerve. 2012;46(4):540–7.

    Google Scholar 

  52. Clarke E, Bearn JG. The spiral nerve bands of Fontana. Brain. 1972;95(1):1–20.

    Google Scholar 

  53. Ushiki T, Ide C. Three-dimensional organization of the collagen fibrils in the rat sciatic nerve as revealed by transmission- and scanning electron microscopy. Cell Tissue Res. 1990;260(1):175–84.

    CrossRef  CAS  PubMed  Google Scholar 

  54. Roussouly P, Nnadi C. Sagittal plane deformity: an overview of interpretation and management. Eur Spine J. 2010;19(11):1824–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Nicholas Khoury MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Khoury, A.N., Gómez-Hoyos, J., Martin, H.D. (2019). Hip-Spine Effect: Hip Pathology Contributing to Lower Back, Posterior Hip, and Pelvic Pain. In: Martin, H., Gómez-Hoyos, J. (eds) Posterior Hip Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-78040-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78040-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78038-2

  • Online ISBN: 978-3-319-78040-5

  • eBook Packages: MedicineMedicine (R0)