Skip to main content

Geochemical Analysis

  • Chapter
  • First Online:
Geological Core Analysis

Part of the book series: SpringerBriefs in Petroleum Geoscience & Engineering ((BRIEFSPGE))

  • 947 Accesses

Abstract

Inorganic geochemistry is used indirectly for reservoir rock analysis. Carbon and oxygen stable isotopes, strontium isotopes, and elemental concentrations are used for this purpose. In isotope analysis, the ratio of the heavier to the lighter isotope type is measured. This ratio is compared to a standard. The difference is positive if the sample contains heavier isotopes and is negative if it is reached in light isotopes. The fractionation has a major role in isotope values of different samples. Vital effects, for example, cause negative excursion in organisms. Both carbon and oxygen isotope ratios are used for sequence stratigraphy and reservoir zonation, recognition of nonconformities, and hiatuses and mass extinctions. Paleotemperature can be calculated by oxygen isotope ratios. The balance between continental and mantle Sr input to the oceans determines the variations of this isotope. The result is used for absolute age dating and understanding sea-level fluctuations. Elemental analysis of the rocks also provides some important proxies for interpreting paleoenvironmental conditions, stratigraphic correlations, facies classifying, provenance studies, and the rate of weathering. Uranium geochemistry has attracted more attention in recent years because it is available from many reservoirs through spectral gamma logging. Rate of erosion and redox conditions, as well as original mineralogy are inferred from uranium distribution in a studied formation. Sample selection is very important in geochemical analysis because the final results and interpretations strongly depend on sample type, distance from each other, and final quality control. Studies of some of these aspects and their applications are just at their beginning stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berger WH, Vincent E (1986) Deep-sea carbonates: reading the carbon isotope signal. Geol Rundsch 75:249–269

    Article  Google Scholar 

  • Blatt H, Middleton G, Murray R (1972) Origin of sedimentary rocks. Prentice Hall, New Jersey

    Google Scholar 

  • Craigie N (2018) Principles of elemental chemostratigraphy. Springer, Cham

    Book  Google Scholar 

  • Ehrenberg SN, Svana TA, Swart PK (2008) Uranium depletion across the Permian-Triassic boundary in Middle East carbonates: signature of oceanic anoxia. AAPG Bull 92:691–707

    Article  Google Scholar 

  • Elderfield H (1986) Strontium isotope stratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 57:71–90

    Article  Google Scholar 

  • Emrich K, Ehhalt DH, Vogel JC (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet Sci Lett 8:363–371

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam H, Urey H (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326

    Article  Google Scholar 

  • Erez J, Luz B (1983) Experimental paleotemperature equation for planktonic foraminifera. Geochim Cosmochim Acta 47:1025–1031

    Article  Google Scholar 

  • Fiet N, Gorin GE (2000) Gamma-ray spectrometry as a tool for stratigraphic correlations in the carbonate-dominated, organic rich, pelagic Albian sediments in central Italy. Eclogae Geol Helv 93:175–181

    Google Scholar 

  • Grossman EL (1984) Carbon isotopic fractionation in live benthic foraminifera—comparison with inorganic precipitate studies. Geochim Cosmochim Acta 48:1505–1512

    Article  Google Scholar 

  • Heydari E, Arzani N, Safaei M, Hassanzadeh J (2013) Ocean’s response to a changing climate: clues from variations in carbonate mineralogy across the Permian-Triassic boundary of the Shareza Section, Iran. Global Planet Change 105:79–90

    Article  Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry. Springer, Berlin

    Google Scholar 

  • Holmden C, Creaser RA, Muehlenbachs K, Leslie SA, Bergström SM (1998) Isotopic evidence for geochemical decoupling between ancient epeiric seas and bordering oceans: implications for secular curves. Geology 26:567–570

    Article  Google Scholar 

  • Huck S, Heimhofer U, Immenhauser A, Weissert H (2013) Carbon-isotope stratigraphy of Early Cretaceous (urgonian) shoal-water deposits: diachronous changes in carbonate-platform production in the north-western Tethys. Sed Geol 290:157–174

    Article  Google Scholar 

  • Immenhauser A, Della Porta G, Kenter JAM, Bahamonde JR (2003) An alternative model for positive shifts in shallow-marine carbonate δ13C and δ18O. Sedimentology 50:953–959

    Article  Google Scholar 

  • Kroopnick P (1985) The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Res 32:57–84

    Article  Google Scholar 

  • Lahijani H, Tavakoli V (2012) Identifying provenance of South Caspian coastal sediments using mineral distribution pattern. Quatern Int 261:128–137

    Article  Google Scholar 

  • McArthur J (2007) Recent trends in strontium isotope stratigraphy. Terra Nova 6:331–358

    Article  Google Scholar 

  • McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS Version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–157

    Article  Google Scholar 

  • McArthur JM, Howarth RJ, Shields GA (2012) Strontium isotope stratigraphy. In: Felix M, Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale 2012, pp 127–144

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophy Geosy 2:2000GC000109

    Google Scholar 

  • Miura K (1973) Weathering in plutonic rocks. Part I weathering during the late-Pliocene of Gotsu plutonic rock. J Soc Eng Geol Jpn 14(3)

    Google Scholar 

  • Naderi-Khujin M, Seyrafian A, Vaziri-Moghaddam H, Tavakoli V (2016) Characterization of the late Aptian top-Dariyan disconformity surface offshore SW Iran: a multiproxy approach. J Petrol Geol 39:269–286

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Palmer MR, Elderfield H (1985) Sr isotope composition of sea water over the past 75 Myr. Nature 314:526–528

    Article  Google Scholar 

  • Pearce TJ, Wray DS, Ratcliffe KT, Wright DK, Moscariella A (2005) Chemostratigraphy of the upper carboniferous schooner formation, southern North Sea. In Colinson JD, Evans DJ, Holiday DW, Jones NS (eds) Carboniferous hydrocarbon geology: the southern North Sea and surrounding onshore areas Yorkshire Geological Society, Occasional Publication Series, vol 7. Yorkshire, pp 147–164

    Google Scholar 

  • Ramkumar Mu (ed) (2015) Chemostratigraphy: concepts, techniques and application. Elsevier, Amsterdam

    Google Scholar 

  • Reiche P (1943) Graphic representation of chemical weathering. J Sediment Petrol 13:58–68

    Google Scholar 

  • Retallack GJ (1997) A colour guide to paleosols. Wiley, Chichester

    Google Scholar 

  • Rosman JR, Taylor PD (1998) Isotopic compositions of the elements (technical report): commission on atomic weights and isotopic abundances. Pure Appl Chem 70:217–235

    Article  Google Scholar 

  • Spirakis CS (1996) The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geol Rev 11:53–69

    Article  Google Scholar 

  • Srinivasan MS, Sinha DK (1998) Early Pliocene closing of the Indonesian Seaway: evidence from northeast Indian Ocean and southwest Pacific deep sea cores. J Southe Asian Earth 16:29–44

    Article  Google Scholar 

  • Swart PK, Eberli G (2005) The nature of the δ13C of periplatform sediments: implications for stratigraphy and the global carbon cycle. Sed Geol 175:115–129

    Article  Google Scholar 

  • Tavakoli V (2016) Ocean chemistry revealed by mineralogical and geochemical evidence at the Permian-Triassic mass extinction, offshore the Persian Gulf, Iran. Acta Geol Sin 90:1852–1864

    Article  Google Scholar 

  • Tavakoli V, Rahimpour-Bonab H (2012) Uranium depletion across Permian-Triassic boundary in Persian Gulf and its implications for paleooceanic conditions. Palaeogeogr Palaeoclimatol Palaeoecol 350:101–113

    Article  Google Scholar 

  • Tavakoli V, Naderi-Khujin M, Seyedmehdi Z (2018) The end-Permian regression in the western Tethys: sedimentological and geochemical evidence from offshore the Persian Gulf, Iran. Geo-Mar Lett 38:179–192

    Google Scholar 

  • Tiwari M, Singh AK, Sinha DK (2015) Stable isotopes: tools for understanding past climatic conditions and their applications in chemostratigraphy. In: Ramkumar Mu (ed) Chemostratigraphy: concepts, techniques and application. Elsevier, Amsterdam, pp 65–92

    Chapter  Google Scholar 

  • Veizer J (1989) Strontium isotopes in seawater through time. Annu Rev Earth Planet Sci 17:141–167

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl P, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  Google Scholar 

  • Wedepohl KH (1971) Environmental influences on the chemical composition of shales and clays. In: Ahrens LH, Press F, Runcorn SK, Urey HC (eds) Physics and chemistry of the Earth. Pergamon, Oxford

    Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248

    Article  Google Scholar 

  • Wierzbowski H (2013) Strontium isotope composition of sedimentary rocks and its application to chemostratigraphy and palaeoenvironmental reconstructions. Ann Phys 68:23–37

    Google Scholar 

  • Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158

    Article  Google Scholar 

  • Yang Y, Fang X, Li M, Galy A, Koutsodendris A, Zhang W (2015) Paleoenvironmental implications of uranium concentrations in lacustrine calcareous clastic-evaporite deposits in the western Qaidam Basin. Palaeogeogr Palaeoclimatol Palaeoecol 417:422–431

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Tavakoli .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tavakoli, V. (2018). Geochemical Analysis. In: Geological Core Analysis. SpringerBriefs in Petroleum Geoscience & Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-78027-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78027-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78026-9

  • Online ISBN: 978-3-319-78027-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics