Skip to main content

New Challenges of Echography in Reproduction

  • Chapter
  • First Online:
Reproductive Medicine for Clinical Practice

Part of the book series: Reproductive Medicine for Clinicians ((REMECL,volume 1))

  • 604 Accesses

Abstract

Past few decades of advances in assisted reproductive technology can be at least partially attributed to the advances in the imaging technologies, especially ultrasound. The advances in ultrasound technology like Doppler and 3D and 4D ultrasound have significantly improved the understanding of the follicular and endometrial dynamics in natural and treatment cycle. These can also be used to understand the hormonal dynamics of the human reproductive system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Golan A, Herman A, Soffer Y, Bukovsky I, Ron-El R. Ultrasonic control without hormone determination for ovulation induction in in-vitro fertilization/embryo-transfer with gonadotropin-releasing hormone analogue and human menopausal gonadotropin. Hum Reprod. 1994;9:1631–3.

    Article  CAS  Google Scholar 

  2. Shoham Z, DiCarlo C, Pater A, Conway GS, Jacobs HS. Is it possible to run a successful ovulation induction program based solely on ultrasound monitoring? The importance of endometrial measurements. Fertil Steril. 1991;56:836–4.

    Article  CAS  Google Scholar 

  3. Tan SL. Simplification of IVF therapy. Curr Opin Obstet Gynecol. 1994;6:111–40.

    CAS  PubMed  Google Scholar 

  4. Järvelä IY, Sladkevicius P, Kelly S, Ojha K, Campbell S, Nagrund G. Quantification of ovarian power Doppler signal with three-dimensional ultrasonography to predict response during in vitro fertilization. Obstet Gynecol. 2003;102(4):816–22.

    PubMed  Google Scholar 

  5. Wahad SA, Alalaf SK, Al-Shawaf T, Al-Tawil NG. Ovarian reserve markers and assisted reproductive technique (ART) outcomes in women with advanced endometriosis. Reprod Biol Endocrinol. 2014;12:120.

    Article  Google Scholar 

  6. Chen M-J, Yang W-S, Chen C-l, Wu M-Y, Yang Y-S, Ho H-N. The relationship between anti-Müllerian hormone, androgen and insulin resistance on the number of antral follicles in women with polycystic ovary syndrome. Hum Reprod. 2008;23(4):952–7.

    Article  CAS  Google Scholar 

  7. Kline J, Kinney A, Kelly A, Ruess ML, Levin B. Predictors of antral follicle count during the reproductive years. Hum Reprod. 2005;20:2179–89.

    Article  CAS  Google Scholar 

  8. van Disseldorp J, Lambalk CB, Kwee J, Looman CW, Eijkemans MJ, Fauser BC, Broekmans FJ. Comparison of inter- and intra-cycle variability of anti-Mullerian hormone and antral follicle counts. Hum Reprod. 2010;25(1):221–7.

    Article  Google Scholar 

  9. Panchal S, Nagori CB. Comparison of AFC and AMH for assessment of ovarian reserve. JHRS. 2012;5(3):274–8.

    PubMed  Google Scholar 

  10. Broer SL, Mol BW, Hendriks D, Broekmans SJ. The role of antimullerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril. 2009;91(3):705–14.

    Article  CAS  Google Scholar 

  11. te Velde ER. Advances in fertility studies and reproductive medicine. IFFS. 2007;306.

    Google Scholar 

  12. Rainne-Fenning NJ. What is in a number? The polycystic ovary revisited. Hum Reprod. 2011;26(11):3118–22.

    Article  Google Scholar 

  13. Deb S, Jayaprakasan K, Campbell BK, Clewes JS, Johnson IR, Raine-Fenning NJ. Ultrasound Obstet Gynecol. 2009;33(4):477–483(7).

    Article  CAS  Google Scholar 

  14. Ng EH, Chan CC, Yeung WS, Ho PC. Effect of age on ovarian stromal flow measured by three-dimensional ultrasound with power Doppler in Chinese women with proven fertility. Hum Reprod. 2004;19:2132–7.

    Article  Google Scholar 

  15. Deb S, Campbell BK, Clewes JS, Rainne-Fenning NJ. Quantitative analysis of AFC and size: a comparison of 2D & automated three-dimensional ultrasound techniques. Ultrasound Obstet Gynecol. 2010;35:354–60.

    Article  CAS  Google Scholar 

  16. Hendriks DJ, Kwee J, Mol BW, te Velde ER, Broekmans FJ. Ultrasonography as a tool for the prediction of outcome in IVF patients: a comparative meta-analysis of ovarian volume and antral follicle count. Fertil Steril. 2007;87(4):764–75.

    Article  Google Scholar 

  17. Pellicer A, Ardiles G, Neuspiller F, Remohi J, Simon C, Bonilla-Musoles F. Evaluation of ovarian reserve in young low responders with normal basal levels of follicle-stimulating hormone using three-dimensional ultrasonography. Fertil Steril. 1998;70(4):671–5.

    Article  CAS  Google Scholar 

  18. Arora A, Gainder S, Dhaliwal L, Suri V. Clinical significance of ovarian stromal blood flow in assessment of ovarian response in stimulated cycle for in vitro fertilization. Int J Reprod Contracept Obstet Gynecol. 2015;4(5):1380–3.

    Article  Google Scholar 

  19. Zaidi J, Barber J, Kyei-Mensah A, et al. Relationship of ovarian stromal blood flow at baseline ultrasound to subsequent follicular response in an in vitro fertilization program. Obstet Gynecol. 1996;88:779–84.

    Article  CAS  Google Scholar 

  20. Engmann L, Saldkevicius P, Agrawal R, Bekir JS, Campbell S, Tan S. Value of ovarian stromal blood flow velocity measurement after pituitary suppression in the prediction of ovarian responsiveness and outcome of in vitro fertilization treatment. Fertil Steril. 1999;71(1):22–9.

    Article  CAS  Google Scholar 

  21. Panchal S, Nagori C. Baseline scan and ultrasound diagnosis of PCOS: Donald School. J Ultrasound Obstet Gynecol. 2012;6(3):290–9.

    Article  Google Scholar 

  22. Merce LT, Barco MJ, Bau S, Troyano JM. Prediction of ovarian response and IVF/ICSI outcome by three-dimensional ultrasonography and power Doppler angiography. Eur J Obstet Gynecol Reprod Biol. 2007;132(1):93–100.

    Article  Google Scholar 

  23. Kupesic S, Kurjak A. Predictors of in vitro fertilization outcome by three-dimensional ultrasound. Hum Reprod. 2002;17(4):950–5.

    Article  CAS  Google Scholar 

  24. Schild RL, Holthaus S, d’Alquen J, Fimmers R, Dorn C, van Der Ven H, Hansmann M. Quantitative assessment of subendometrial blood flow by three-dimensional-ultrasound is an important predictive factor of implantation in an in-vitro fertilization programme. Hum Reprod. 2000;15:89–94.

    Article  CAS  Google Scholar 

  25. Pellerito JS, McCarthy SM, Doyle MB, Glickman MG, DeCherney AH. Diagnosis of uterine anomalies: relative accuracy of MR imaging, endovaginal sonography and hysterosalpingography. Radiology. 1992;183:795–800.

    Article  CAS  Google Scholar 

  26. Jurkovic D, Geipel A, Gruboeck K, Jauniaux E, Natucci R, Campbell S. Three-dimensional ultrasound for the assessment of uterine anatomy and detection of congenital anomalies: comparison with hysterosalpingography and two-dimensional ultrasonography. Ultrasound Obstet Gynecol. 1995;5:233–7.

    Article  CAS  Google Scholar 

  27. Troiano RN, Mc Carthy SM. Mullerian duct anomalies: imaging and clinical issues. Radiology. 2004;233(1):19–34.

    Article  Google Scholar 

  28. Deutch TD, Abuhamad AZ. The role of 3-dimensional ultrasonography and magnetic resonance imaging in the diagnosis of mullerian duct anomalies; a review of the literature. J Ultrasound Med. 2008;27(3):413–23.

    Article  Google Scholar 

  29. Bermejo C, Martinez TP, Cantarero R, Diaz D, Pérez Pedregosa J, Barròn E, Labrador E, Ruiz Lòpez L. Three-dimensional ultrasound in the diagnosis of Mullerian duct anomalies and concordance with magnetic resonance imaging. Ultrasound Obstet Gynecol. 2010;35:593–601.

    Article  CAS  Google Scholar 

  30. Parsons AK, Lense JJ. Sonohysterography for endometrial abnormalities: preliminary results. J Clin Ultrasound. 1993;21:87–95.

    Article  CAS  Google Scholar 

  31. Syrop CH, Sahakian V. Transvaginal sonographic detection of endometrial polyps with fluid contrast augmentation. Obstet Gynecol. 1992;79:1041–3.

    CAS  PubMed  Google Scholar 

  32. Cil AP, Tulunay G, Kose MF, Haberal A. Ultrasound Obstet Gynecol. 2010;35:233–7.

    Article  CAS  Google Scholar 

  33. Kalogirou D, Antoniou G, Botsis D, et al. Is colour Doppler necessary in the evaluation of tubal patency by hysterosalpingo-contrast sonography. Clin Exp Obstet Gynecol. 1997;24(2):101–3.

    CAS  PubMed  Google Scholar 

  34. Deichert U, van de Sandt M. Transvaginal hysterosalpingo-contrast sonography(Hy-Co-Sy). The assessment of tubal patency and uterine abnormalities by contrast enhanced sonography. Adv Echo-Contrast. 1993;2:55–8.

    Google Scholar 

  35. Kupesic S, Kurjak A. Gynecological vaginal sonographic interventional procedures—what does colour add? Gynecol Perinatol. 1994;3:57–60.

    Google Scholar 

  36. Stern J, Peters AJ, Coulam CB. Colour Doppler ultrasonography assessment of tubal patency: a comparison study with traditional techniques. Fertil Steril. 1992;58(5):897–900.

    Article  CAS  Google Scholar 

  37. Sladkevicius P, Ojha K, Campbell S, et al. Three-dimensional power Doppler imaging in the assessment of fallopian tube patency. Ultrasound Obstet Gynecol. 2000;16(7):644–7.

    Article  CAS  Google Scholar 

  38. Exacoustos C, Di Giovanni A, Szabolcs B, Romeo V, Romanini ME, Luciano D, Zupi E, Arduini D. Automated three-dimensional coded contrast imaging hysterosalpingo-contrast sonography: feasibility in office tubal patency testing. Ultrasound Obstet Gynecol. 2013;41(3):328–35.

    Article  CAS  Google Scholar 

  39. Chan CC, Ng EH, Tang OS, et al. Comparison of three-dimensional hysteron-contrast-sonography and diagnostic laparoscopy with chromopertubation in the assessment of tubal patency for the investigation of subfertility. Acta Obstet Gynecol Scand. 2005;84(9):909–13.

    Article  Google Scholar 

  40. Kyei-Mensah A, Zaidi J, Pittrof R, Shaker A, Campbell S, Tan SL. Transvaginal three-dimensional ultrasound reproducibility of ovarian and endometrial volume measurements. Fertil Steril. 1996;66:718–22.

    Article  CAS  Google Scholar 

  41. Jokubkeine L, Sladkevicius P, rovas L, Valentine L. Assessment of changes in volume and vascularity of ovaries during the normal menstrual cycle using three-dimensional power Doppler ultrasound. Hum Reprod. 2006;21(10):2661–8.

    Article  Google Scholar 

  42. Kupesic S, Kurjak A. Uterine and ovarian perfusion during the periovulatory period assessed by transvaginal colour Doppler. Fertil Steril. 1993;60(3):439–43.

    Article  CAS  Google Scholar 

  43. Nargund G, Doyle PE, Bourne TH, et al. Ultrasound-derived indices of follicular blood flow before HCG administration and prediction of oocyte recovery and preimplantation embryo quality. Hum Reprod. 1996;11:2512–7.

    Article  CAS  Google Scholar 

  44. Nargund G, Bourne TH, Doyle PE, et al. Association between ultrasound indices of follicular blood flow, oocyte recovery and preimplantation embryo quality. Hum Reprod. 1996;11:109–13.

    Article  CAS  Google Scholar 

  45. Vlaisavljevic V, Reljic M, Gavric Lovrec V, Zarula D, Sergent N. Measurement of perifollicular blood flow of the dominant preovulatory follicle, using three-dimensional power Doppler. Ultrasound Obstet Gynecol. 2003;22(5):520–6.

    Article  CAS  Google Scholar 

  46. Panchal SY, Nagori CB. Can 3D PD be a better tool for assessing the pre HCG follicle and endometrium? A randomized study of 500 cases. Presented at 16th World Congress on Ultrasound in Obstetrics and Gynecology, 2006, London. J Ultrasound Obstet Gynecol. 2006;28(4):504.

    Article  Google Scholar 

  47. Feichtinger W. Transvaginal three-dimensional imaging for evaluation and treatment of infertility. In: Merz E, editor. 3D ultrasound in obstetrics and gyneacology. Philadelphia: Lipincott Williams & Wilkins; 1998. p. 37–43.

    Google Scholar 

  48. Poehl M, Hohlagschwandtner M, Doerner V, Dillinger B, Feichtinger W. Cumulus assessment by three-dimensional ultrasound for in vitro fertilization. Ultrasound Obstet Gynecol. 2000;16(3):251.

    Article  CAS  Google Scholar 

  49. Bourne TH, Jurkovic D, Waterson J, et al. Intrafollicular blood flow during human ovulation. Ultrasound Obstet Gynecol. 1991;1:53–9.

    Article  CAS  Google Scholar 

  50. Zaidi J, Campbell S, Pittrof R, Tan SL. Endometrial thickness, morphology, vascular penetration and velocimetry in predicting implantation in an in vitro fertilization program. Ultrasound Obstet Gynecol. 1995;6:191–8.

    Article  CAS  Google Scholar 

  51. Applebaum M. The ‘steel’ or ‘teflon’ endometrium—ultrasound visualization of endometrial vascularity in IVF patients and outcome. Presented at The third World Congress of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol. 1993;3(Suppl 2):10.

    Google Scholar 

  52. Chein LW, et al. Assessment of uterine receptivity by the endometrial-subendometrial blood flow distribution pattern in women undergoing IVF-ET. Fertil Steril. 2002;78:245–51.

    Article  Google Scholar 

  53. Nagori CB, Panchal S. Endometrial vascularity: its relation to implantation rates. Int J Infertil Fetal Med. 2012;3(2):48–50.

    Article  Google Scholar 

  54. Yang J-H, et al. Association of endometrial blood flow as determined by a modified colour Doppler technique with subsequent outcome of IVF. Hum Reprod. 1999;14:1606–10.

    Article  CAS  Google Scholar 

  55. Raga F, Bonilla-Musoles F, Casan EM, Klein O, Bonilla F. Assessment of endometrial volume by three-dimensional ultrasound prior to embryo transfer: clues to endometrial receptivity. Hum Reprod. 1999;14:2851–4.

    Article  CAS  Google Scholar 

  56. Kyei-Mensah A, Zaidi J, Pittrof R, Shaker A, Campbell S, Tan SL. Transvaginal three-dimensional ultrasound: accuracy of follicular volume measurements. Fertil Steril. 1996;65:371–6.

    Article  CAS  Google Scholar 

  57. Kupesic S, Bekavac I, Bjelos D, Kurjak A. Assessment of endometrial receptivity by transvaginal colour Doppler and three-dimensional power Doppler ultrasonography in patients undergoing in vitro fertilization procedures. J Ultrasound Med. 2001;20:125–34.

    Article  CAS  Google Scholar 

  58. Merce LT, et al. 2D and 3D power Doppler Ultrasound study of endometrium as implantation marker, Text book of transvaginal Sonography. p. 241–242.

    Google Scholar 

  59. Ng EH, Chan CC, Tang OS, Yeung WS, Ho PC. Relationship between uterine blood flow and endometrial and subendometrial blood flows during stimulated and natural cycles. Fertil Steril. 2006;85(3):721–7.

    Article  Google Scholar 

  60. Wu HM, Chiang CH, Huang HY, Chao AS, Wang HS, Soong YK. Detection of subendometrial vascularization flow index by three-dimensional ultrasound may be useful for predicting pregnancy rate for patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2003;79(3):507–11.

    Article  Google Scholar 

  61. Glock JL, Brumsted JR. Color flow pulsed Doppler ultrasound in diagnosing luteal phase defect. Fertil Steril. 1995;64:500–4.

    Article  CAS  Google Scholar 

  62. Steer CV, Tan SL, Mason BA, Campbell S. Midluteal phase vaginal color Doppler assessment of uterine artery impedance in a subfertile population. Fertil Steril. 1994;61:53–8.

    Article  CAS  Google Scholar 

  63. Kupesic S. The first three weeks assessed by transvaginal color Doppler. J Perinat Med. 1996;24:301–17.

    Article  CAS  Google Scholar 

  64. Tan S-Y, Hang F, Purvarshi G, Li M-Q, Meng D-H, Huang L-L. Decreased endometrial vascularity and receptivity in unexplained recurrent miscarriage patients during midluteal and early pregnancy phase Taiwanese. J Obstet Gynecol. 2015;54(5):522–6.

    Google Scholar 

  65. Aziz R, Carmina E, Dewailly D, Diamanti-Kandaraakis E, Escobar-Morreale HF, Futterweit W, et al. The androgen excess and PCOS society criteria for polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91:456–88.

    Article  Google Scholar 

  66. Polson DW, Adams J, Wadsworth J, Franks S. Polycystic ovaries—a common finding in normal women. Lancet. 1988;1:870–2.

    Article  CAS  Google Scholar 

  67. Legro RS, Chiu P, Kunselman AR, Bentley CM, Dodson WC, Dunaif A. Polycystic ovaries are common in women with hyperandrogenic chronic anovulation but do not predict metabolic or reproductive genotype. J Clin Endocrinol Metab. 2005;90(5):2571–9.

    Article  CAS  Google Scholar 

  68. Lam P-M, Raine-Fenning N. The role of three-dimensional ultrasonography in polycystic ovary syndrome. Hum Reprod. 2006;21(9):2209–15.

    Article  Google Scholar 

  69. Raine-Fenning NJ, Campbell BK, Clewes JS, Johnson IR. The interobserver reliability of ovarian volume measurement is improved with three-dimensional ultrasound, but dependent upon technique. J Phys Conf Ser. 2004;1:181–6.

    Article  Google Scholar 

  70. Jarvela IY, Mason HD, Sladkevicius R, et al. Characterization of normal and polycystic ovaries using three-dimensional power Doppler ultrasonography. J Assist Reprod Genet. 2002;19:582–90.

    Article  CAS  Google Scholar 

  71. Buckett WM, Bouzayen R, Watkin KL, Tulandi T, Tan SL. Ovarian stromal echogenicity in women with normal and polycystic ovaries. Hum Reprod. 1999;14:618–21.

    Article  CAS  Google Scholar 

  72. Kyei-Mensah AA, et al. Relationship of ovarian stromal volume to serum androgen concentrations in patients with PCOS. Hum Reprod. 1998;13:1437–41.

    Article  CAS  Google Scholar 

  73. Pache TD. Association between ovarian changes assessed by transvaginal sonography and clinical and endocrine signs of polycystic ovary syndrome. Fertil Steril. 1993;59:544–9.

    Article  CAS  Google Scholar 

  74. Puzigaca Z, Prelevic GM, Stretenovic Z, Balint-Peric L. Ovarian enlargement as a possible marker of androgen activity in polycystic ovary syndrome. Gynecol Endocrinol. 1991;5:167–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Kurjak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 IAHR (International Academy of Human Reproduction)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panchal, S., Kurjak, A. (2018). New Challenges of Echography in Reproduction. In: Schenker, J., Sciarra, J., Mettler, L., Genazzani, A., Birkhaeuser, M. (eds) Reproductive Medicine for Clinical Practice. Reproductive Medicine for Clinicians, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-78009-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78009-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78008-5

  • Online ISBN: 978-3-319-78009-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics