Skip to main content

Medical Applications of X-Ray Nanochemistry

  • Chapter
  • First Online:
  • 995 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Three main aspects of medical applications of X-ray nanochemistry are discussed in this chapter. The first part is enhanced X-ray imaging of tumors in animals or phantoms using X-ray absorbing nanomaterials. The second is nanomaterial-assisted cancer treatment using X-rays. The treatment is performed on both cancer cell lines and tumors in animals, which are reviewed in two sections. Theoretical modeling of treatment is also discussed in another section. In addition, pre-clinical and clinical studies and miscellaneous methods such as scanning focusing needle beam X-rays are also presented in this part. The third part is X-ray activated or triggered nanodrug release using X-ray nanochemistry. These nanodrugs resemble prodrugs with the exception of the nanodrugs are activated by X-rays. In addition to these three parts, a general description of in vitro and in vivo protocols is also given at the beginning of the chapter, and recent reviews in these fields are mentioned at the end of this chapter.

All living things have inertia too – once they start, it is hard to stop

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kassis, A. I. (2003). Cancer therapy with Auger electrons: Are we almost there? Journal of Nuclear Medicine, 44, 1479–1481.

    PubMed  CAS  Google Scholar 

  2. Sung, W., Jung, S., & Ye, S. J. (2016). Evaluation of the microscopic dose enhancement for nanoparticle-enhanced Auger therapy. Physics in Medicine and Biology, 61, 7522–7535.

    Article  PubMed  CAS  Google Scholar 

  3. Guo, T. (2004, August). Nanoparticle enhanced X-ray therapy. ACS Annual Meeting, Philadelphia.

    Google Scholar 

  4. Guo, T. (2006). Nanoparticle radiosensitizers. US patent application number: US 11/728,943; publication number: US20080003183 A1 and WO2006037081A2.

    Google Scholar 

  5. Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology, 49, N309–N315.

    Article  PubMed  CAS  Google Scholar 

  6. Foley, E., Carter, J., Shan, F., & Guo, T. (2005). Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 3192–3194.

    Google Scholar 

  7. Roco, M. C., & Tech, N. S. E. (2004). Nanoscale science and engineering: Unifying and transforming tools. AICHE Journal, 50, 890–897.

    Article  CAS  Google Scholar 

  8. Starkewolf, Z. B., Miyachi, L., Wong, J., & Guo, T. (2013). X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chemical Communications, 49, 2545–2547.

    Article  PubMed  CAS  Google Scholar 

  9. Ma, N., Xu, H. P., An, L. P., Li, J., Sun, Z. W., & Zhang, X. (2011). Radiation-sensitive diselenide block co-polymer micellar aggregates: Toward the combination of radiotherapy and chemotherapy. Langmuir, 27, 5874–5878.

    Article  PubMed  CAS  Google Scholar 

  10. Maggiorella, L., Barouch, G., Devaux, C., Pottier, A., Deutsch, E., Bourhis, J., Borghi, E., & Levy, L. (2012). Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncology, 8, 1167–1181.

    Article  PubMed  CAS  Google Scholar 

  11. Chen, J., Li, M. F., Yi, X., Zhao, Q., Chen, L., Yang, C., Wu, J. C., & Yang, K. (2017). Synergistic effect of thermo-radiotherapy using au@FeS Core-Shell nanoparticles as multifunctional therapeutic nanoagents. Particle and Particle Systems Characterization, 34.

    Article  CAS  Google Scholar 

  12. Stewart, C., Konstantinov, K., McKinnon, S., Guatelli, S., Lerch, M., Rosenfeld, A., Tehei, M., & Corde, S. (2016). First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Physica Medica, 32, 1444–1452.

    Article  PubMed  Google Scholar 

  13. Chang, Y. Z., He, L. Z., Li, Z. B., Zeng, L. L., Song, Z. H., Li, P. H., Chan, L., You, Y. Y., Yu, X. F., Chu, P. K., et al. (2017). Designing core-shell gold and selenium nanocomposites for cancer radiochemotherapy. ACS Nano, 11, 4848–4858.

    Article  PubMed  CAS  Google Scholar 

  14. Leach, J. K., Van Tuyle, G., Lin, P. S., Schmidt-Ullrich, R., & Mikkelsen, R. B. (2001). Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Research, 61, 3894–3901.

    PubMed  CAS  Google Scholar 

  15. Zhang, X. M., Yang, H. J., Gu, K., Chen, J. A., Rui, M. J., & Jiang, G. L. (2011). In vitro and in vivo study of a nanoliposomal cisplatin as a radiosensitizer. International Journal of Nanomedicine, 6, 437–444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Li, X., Zhou, H. Y., Yang, L., Du, G. Q., Pai-Panandiker, A. S., Huang, X. F., & Yan, B. (2011). Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles. Biomaterials, 32, 2540–2545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rahman, W. N., Corde, S., Yagi, N., Aziz, S. A. A., Annabell, N., & Geso, M. (2014). Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. International Journal of Nanomedicine, 9, 2459–2467.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Regulla, D. F., Hieber, L. B., & Seidenbusch, M. (1998). Physical and biological interface dose effects in tissue due to X-ray-induced release of secondary radiation from metallic gold surfaces. Radiation Research, 150, 92–100.

    Article  PubMed  CAS  Google Scholar 

  19. Gara, P. M. D., Garabano, N. I., Portoles, M. J. L., Moreno, M. S., Dodat, D., Casas, O. R., Gonzalez, M. C., & Kotler, M. L. (2012). ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. Journal of Nanoparticle Research, 14, 741.

    Google Scholar 

  20. Herold, D. M., Das, I. J., Stobbe, C. C., Iyer, R. V., & Chapman, J. D. (2000). Gold microspheres: A selective technique for producing biologically effective dose enhancement. International Journal of Radiation Biology, 76, 1357–1364.

    Article  PubMed  CAS  Google Scholar 

  21. Choi, G. H., Seo, S. J., Kim, K. H., Kim, H. T., Park, S. H., Lim, J. H., & Kim, J. K. (2012). Photon activated therapy (PAT) using monochromatic synchrotron x-rays and iron oxide nanoparticles in a mouse tumor model: Feasibility study of PAT for the treatment of superficial malignancy. Radiation Oncology, 7, 184.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, C. J., Wang, C. H., Chien, C. C., Yang, T. Y., Chen, S. T., Leng, W. H., Lee, C. F., Lee, K. H., Hwu, Y., Lee, Y. C., et al. (2008). Enhanced x-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotechnology, 19(295104), 1–5.

    CAS  Google Scholar 

  23. Xu, L. F., Qiu, X. F., Zhang, Y. T., Cao, K., Zhao, X. Z., Wu, J. H., Hu, Y. Q., & Guo, H. Q. (2016). Liposome encapsulated perfluorohexane enhances radiotherapy in mice without additional oxygen supply. Journal of Translational Medicine, 14, 268.

    Google Scholar 

  24. Kleinauskas, A., Rocha, S., Sahu, S., Sun, Y. P., & Juzenas, P. (2013). Carbon-core silver-shell nanodots as sensitizers for phototherapy and radiotherapy. Nanotechnology, 24, 325103.

    Article  PubMed  CAS  Google Scholar 

  25. Youkhana, E., Feltis, B., Blencowe, A., & Geso, M. (2017). Titanium dioxide nanoparticles as radiosensitisers: An in vitro and phantom-based study. International Journal of Medical Sciences, 14, 602–614.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Taggart, L. E., McMahon, S. J., Butterworth, K. T., Currell, F. J., Schettino, G., & Prise, K. M. (2016). Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology, 27, 215101.

    Article  PubMed  CAS  Google Scholar 

  27. Pan, C. L., Chen, M. H., Tung, F. I., & Liu, T. Y. (2017). A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray. Acta Biomaterialia, 47, 159–169.

    Article  PubMed  CAS  Google Scholar 

  28. Liu, C. J., Wang, C. H., Chen, S. T., Chen, H. H., Leng, W. H., Chien, C. C., Wang, C. L., Kempson, I. M., Hwu, Y., Lai, T. C., et al. (2010). Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Physics in Medicine and Biology, 55, 931–945.

    Article  PubMed  CAS  Google Scholar 

  29. Lim, S. N., Pradhan, A. K., Barth, R. F., Nahar, S. N., Nakkula, R. J., Yang, W. L., Palmer, A. M., Turro, C., Weldon, M., Bell, E. H., et al. (2015). Tumoricidal activity of low-energy 160-KV versus 6-MV X-rays against platinum-sensitized F98 glioma cells. Journal of Radiation Research, 56, 77–89.

    Article  PubMed  CAS  Google Scholar 

  30. Bhattarai, S. R., Derry, P. J., Aziz, K., Singh, P. K., Khoo, A. M., Chadha, A. S., Liopo, A., Zubarev, E. R., & Krishnan, S. (2017). Gold nanotriangles: Scale up and X-ray radiosensitization effects in mice. Nanoscale, 9, 5085–5093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Diaz, R., Hariri, G., Passarella, R. J., Wu, H., Fu, A., & Hallahan, D. E. (2008). Radiation-guided platinum drug delivery using recombinant peptides. International Journal of Radiation Oncology, Biology, Physics, 72, S1–S1.

    Article  Google Scholar 

  32. Wang, G. D., Nguyen, H. T., Chen, H. M., Cox, P. B., Wang, L. C., Nagata, K., Hao, Z. L., Wang, A., Li, Z. B., & Xie, J. (2016). X-ray induced photodynamic therapy: A combination of radiotherapy and photodynamic therapy. Theranostics, 6, 2295–2305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yang, W. S., Read, P. W., Mi, J., Baisden, J. M., Reardon, K. A., Larner, J. M., Helmke, B. P., & Sheng, K. (2008). Semiconductor nanoparticles as energy mediators for photosensitizer-enhanced radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 72, 633–635.

    Article  PubMed  CAS  Google Scholar 

  34. Shi, M. H., Paquette, B., Thippayamontri, T., Gendron, L., Guerin, B., & Sanche, L. (2016). Increased radiosensitivity of colorectal tumors with intra-tumoral injection of low dose of gold nanoparticles. International Journal of Nanomedicine, 11, 5323–5333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chithrani, D. B., Jelveh, S., Jalali, F., van Prooijen, M., Allen, C., Bristow, R. G., Hill, R. P., & Jaffray, D. A. (2010). Gold nanoparticles as radiation sensitizers in cancer therapy. Radiation Research, 173, 719–728.

    Article  CAS  PubMed  Google Scholar 

  36. Yong, Y., Zhang, C. F., Gu, Z. J., Du, J. F., Guo, Z., Dong, X. H., Xie, J. N., Zhang, G. J., Liu, X. F., & Zhao, Y. L. (2017). Polyoxometalate-based radiosensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS Nano, 11, 7164–7176.

    Article  PubMed  CAS  Google Scholar 

  37. Liu, X., Liu, Y., Zhang, P. C., Jin, X. D., Zheng, X. G., Ye, F., Chen, W. Q., & Li, Q. (2016). The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation. International Journal of Nanomedicine, 11, 3517–3530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Al Zaki, A., Joh, D., Cheng, Z. L., De Barros, A. L. B., Kao, G., Dorsey, J., & Tsourkas, A. (2014). Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano, 8, 104–112.

    Article  PubMed  CAS  Google Scholar 

  39. Saberi, A., Shahbazi-Gahrouei, D., Abbasian, M., Fesharaki, M., Baharlouei, A., & Arab-Bafrani, Z. (2017). Gold nanoparticles in combination with megavoltage radiation energy increased radiosensitization and apoptosis in colon cancer HT-29 cells. International Journal of Radiation Biology, 93, 315–323.

    Article  PubMed  CAS  Google Scholar 

  40. Kim, S. R., & Kim, E. H. (2017). Gold nanoparticles as dose-enhancement agent for kilovoltage X-ray therapy of melanoma. International Journal of Radiation Biology, 93, 517–526.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang, P. P., Qiao, Y., Xia, J. F., Guan, J. J., Ma, L. Y., & Su, M. (2015). Enhanced radiation therapy with multilayer microdisks containing radiosensitizing gold nanoparticles. ACS Applied Materials & Interfaces, 7, 4518–4524.

    Article  CAS  Google Scholar 

  42. Ma, N. N., Jiang, Y. W., Zhang, X. D., Wu, H., Myers, J. N., Liu, P. D., Jin, H. Z., Gu, N., He, N. Y., Wu, F. G., et al. (2016). Enhanced radiosensitization of gold Nanospikes via hyperthermia in combined cancer radiation and photothermal therapy. ACS Applied Materials & Interfaces, 8, 28480–28494.

    Article  CAS  Google Scholar 

  43. Fang, X., Wang, Y. L., Ma, X. C., Li, Y. Y., Zhang, Z. L., Xiao, Z. S., Liu, L. J., Gao, X. Y., & Liu, J. (2017). Mitochondria-targeting Au nanoclusters enhance radiosensitivity of cancer cells. Journal of Materials Chemistry B, 5, 4190–4197.

    Article  CAS  PubMed  Google Scholar 

  44. Li, Y. J., Perkins, A. L., Su, Y., Ma, Y. L., Colson, L., Horne, D. A., & Chen, Y. (2012). Gold nanoparticles as a platform for creating a multivalent poly-SUMO chain inhibitor that also augments ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America, 109, 4092–4097.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Butterworth, K. T., Coulter, J. A., Jain, S., Forker, J., McMahon, S. J., Schettino, G., Prise, K. M., Currell, F. J., & Hirst, D. G. (2010). Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: Potential application for cancer therapy. Nanotechnology, 21(295101), 1–9.

    Google Scholar 

  46. Klein, S., Sommer, A., Distel, L. V. R., Hazemann, J. L., Kroner, W., Neuhuber, W., Muller, P., Proux, O., & Kryschi, C. (2014). Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy. The Journal of Physical Chemistry. B, 118, 6159–6166.

    Article  PubMed  CAS  Google Scholar 

  47. Ito, S., Miyoshi, N., Degraff, W. G., Nagashima, K., Kirschenbaum, L. J., & Riesz, P. (2009). Enhancement of 5-Aminolevulinic acid-induced oxidative stress on two cancer cell lines by gold nanoparticles. Free Radical Research, 43, 1214–1224.

    Article  PubMed  CAS  Google Scholar 

  48. Lee, S. M., Tsai, D. H., Hackley, V. A., Brechbiel, M. W., & Cook, R. F. (2013). Surface-engineered nanomaterials as X-ray absorbing adjuvant agents for Auger-mediated chemo-radiation. Nanoscale, 5, 5252–5256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Huang, P., Bao, L., Zhang, C. L., Lin, J., Luo, T., Yang, D. P., He, M., Li, Z. M., Gao, G., Gao, B., et al. (2011). Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials, 32, 9796–9809.

    Article  PubMed  CAS  Google Scholar 

  50. Jain, S., Coulter, J. A., Hounsell, A. R., Butterworth, K. T., McMahon, S. J., Hyland, W. B., Muir, M. F., Dickson, G. R., Prise, K. M., Currell, F. J., et al. (2011). Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. International Journal of Radiation Oncology, Biology, Physics, 79, 531–539.

    Article  PubMed  CAS  Google Scholar 

  51. McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O’Sullivan, J. M., et al. (2011). Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Scientific Reports, 1. https://doi.org/10.1038/srep00018.

  52. Latimer, C. L. (2013). Octaarginine labelled 30 nm gold nanoparticles as agents for enhanced radiotherapy. Department of Medical Biophysics, University of Toronto, Toronto, Vol. Master of Science, p. 81.

    Google Scholar 

  53. Seo, S. J., Han, S. M., Cho, J. H., Hyodo, K., Zaboronok, A., You, H., Peach, K., Hill, M. A., & Kim, J. K. (2015). Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core-inner-shell excitation by proton or monochromatic X-ray irradiation: Implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. Radiation and Environmental Biophysics, 54, 423–431.

    Article  PubMed  CAS  Google Scholar 

  54. Hwu, J. R., Lin, Y. S., Josephrajan, T., Hsu, M. H., Cheng, F. Y., Yeh, C. S., Su, W. C., & Shieh, D. B. (2009). Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. Journal of the American Chemical Society, 131, 66–68.

    Article  PubMed  CAS  Google Scholar 

  55. Liu, Y. F., Zhang, Y. B., Wang, S. P., Pope, C., & Chen, W. (2008). Optical behaviors of ZnO-porphyrin conjugates and their potential applications for cancer treatment. Applied Physics Letters, 92, 143901.

    Article  CAS  Google Scholar 

  56. Clement, S., Deng, W., Camilleri, E., Wilson, B. C., & Goldys, E. M. (2016). X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: Determination of singlet oxygen quantum yield. Scientific Reports, 6, 19954.

    Google Scholar 

  57. Scaffidi, J. P., Gregas, M. K., Lauly, B., Zhang, Y., & Vo-Dinh, T. (2011). Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. ACS Nano, 5, 4679–4687.

    Article  PubMed  CAS  Google Scholar 

  58. Rahman, W. N., Davidson, R., Yagi, N., Bansal, V., Geso, M., & Darby, I. (2011). Influence of gold nanoparticles on radiation dose enhancement and cellular migration in microbeam-irradiated cells. BioNanoScience, 1, 4–13 4.

    Article  Google Scholar 

  59. Setua, S., Ouberai, M., Piccirillo, S. G., Watts, C., & Welland, M. (2014). Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma. Nanoscale, 6, 10865–10873.

    Article  PubMed  CAS  Google Scholar 

  60. Wu, H., Lin, J., Liu, P. D., Huang, Z. H., Zhao, P., Jin, H. Z., Ma, J., Wen, L. P., & Gu, N. (2016). Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs. Biomaterials, 101, 1–9.

    Article  PubMed  CAS  Google Scholar 

  61. Retif, P., Reinhard, A., Paquot, H., Jouan-Hureaux, V., Chateau, A., Sancey, L., Barberi-Heyob, M., Pinel, S., & Bastogne, T. (2016). Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles. International Journal of Nanomedicine, 11, 6169–6179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wang, G. N., Gao, W., Zhang, X. J., & Mei, X. F. (2016). Au nanocage functionalized with ultra-small Fe3O4 nanoparticles for targeting T-1-T-2 dual MRI and CT imaging of tumor. Scientific Reports, 6, 28258.

    Google Scholar 

  63. Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6, 662–668.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang, X. J., Xing, J. Z., Chen, J., Ko, L., Amanie, J., Gulavita, S., Pervez, N., Yee, D., Moore, R., & Roa, W. (2008). Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clinical and Investigative Medicine, 31, E160–E167.

    Article  CAS  PubMed  Google Scholar 

  65. Kong, T., Zeng, J., Wang, X. P., Yang, X. Y., Yang, J., McQuarrie, S., McEwan, A., Roa, W., Chen, J., & Xing, J. Z. (2008). Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small, 4, 1537–1543.

    Article  PubMed  CAS  Google Scholar 

  66. Roa, W., Zhang, X. J., Guo, L. H., Shaw, A., Hu, X. Y., Xiong, Y. P., Gulavita, S., Patel, S., Sun, X. J., Chen, J., et al. (2009). Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology, 20(375101), 1–9.

    Google Scholar 

  67. Antosh, M. P., Wijesinghe, D. D., Shrestha, S., Lanou, R., Huang, Y. H., Hasselbacher, T., Fox, D., Neretti, N., Sun, S., Katenka, N., et al. (2015). Enhancement of radiation effect on cancer cells by gold-pHLIP. Proceedings of the National Academy of Sciences of the United States of America, 112, 5372–5376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Her, S., Cui, L., Bristow, R. G., & Allen, C. (2016). Dual action enhancement of gold nanoparticle radiosensitization by pentamidine in triple negative breast cancer. Radiation Research, 185, 549–562.

    Article  CAS  PubMed  Google Scholar 

  69. Yu, B., Liu, T., Du, Y., Luo, Z., Zheng, W., & Chen, T. (2016). X-ray-responsive selenium nanoparticles for enhanced cancer chemo-radiotherapy. Colloid Surface B, 139, 180–189.

    Article  CAS  Google Scholar 

  70. McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O'Sullivan, J. M., et al. (2011). Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiotherapy and Oncology, 100, 412–416.

    Article  PubMed  CAS  Google Scholar 

  71. Yu, X. J., Li, A., Zhao, C. Z., Yang, K., Chen, X. Y., & Li, W. W. (2017). Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy. ACS Nano, 11, 3990–4001.

    Article  PubMed  CAS  Google Scholar 

  72. Liu, J. X., Du, Y. H., Liu, J., Zhao, Z., Cheng, K., Chen, Y. S., Wei, Y. C., Song, W. Y., & Zhang, X. (2017). Design of MoFe/Beta@CeO2 catalysts with a core-shell structure and their catalytic performances for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 203, 704–714.

    Article  CAS  Google Scholar 

  73. Khoshgard, K., Hashemi, B., Arbabi, A., Rasaee, M. J., & Soleimani, M. (2014). Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques. Physics in Medicine and Biology, 59, 2249–2263.

    Article  PubMed  CAS  Google Scholar 

  74. Zhou, H. Y., Zhang, Y., Su, G. X., Zhai, S. M., & Yan, B. (2013). Enhanced cancer cell killing by a targeting gold nanoconstruct with doxorubicin payload under X-ray irradiation. RSC Advances, 3, 21596–21603.

    Article  CAS  Google Scholar 

  75. Chithrani, B. D., & Chan, W. C. W. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 7, 1542–1550.

    Article  PubMed  CAS  Google Scholar 

  76. Dou, Y., Guo, Y. Y., Li, X. D., Li, X., Wang, S., Wang, L., Lv, G. X., Zhang, X. N., Wang, H. J., Gong, X. Q., et al. (2016). Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano, 10, 2536–2548.

    Article  PubMed  CAS  Google Scholar 

  77. Roa, W., Yang, A., Li, P., Kong, T., Yang, J., Pervez, N., McQuarrie, S., McEwan, A., Chen, J., & Xing, J. (2007). Functional gold nanoparticles enhance radiation cytotoxicity in breast and prostate cancer cells. Radiotherapy and Oncology, 84, S83–S83.

    Google Scholar 

  78. Kudgus, R. A., Szabolcs, A., Khan, J. A., Walden, C. A., Reid, J. M., Robertson, J. D., Bhattacharya, R., & Mukherjee, P. (2013). Inhibiting the growth of pancreatic adenocarcinoma in vitro and in vivo through targeted treatment with designer gold nanotherapeutics. PLoS One, 8, e57522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Zhang, P. P., Qiao, Y., Wang, C. M., Ma, L. Y., & Su, M. (2014). Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles. Nanoscale, 6, 10095–10099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhu, Z. J., Tang, R., Yeh, Y. C., Miranda, O. R., Rotello, V. M., & Vachet, R. W. (2012). Determination of the intracellular stability of gold nanoparticle monolayers using mass spectrometry. Analytical Chemistry, 84, 4321–4326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Subiel, A., Ashmore, R., & Schettino, G. (2016). Standards and methodologies for characterizing radiobiological impact of high-Z nanoparticles. Theranostics, 6, 1651–1671.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hariri, G., Yan, H. P., Wang, H. L., Han, Z. Z., & Hallahan, D. E. (2010). Radiation-guided drug delivery to mouse models of lung cancer. Clinical Cancer Research, 16, 4968–4977.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kang, B., Mackey, M. A., & El-Sayed, M. A. (2010). Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. Journal of the American Chemical Society, 132, 1517–1519.

    Article  PubMed  CAS  Google Scholar 

  84. Nativo, P., Prior, I. A., & Brust, M. (2008). Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano, 2, 1639–1644.

    Article  PubMed  CAS  Google Scholar 

  85. Yu, M. K., Park, J., & Jon, S. (2012). Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2, 3–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Ng, S. K., Ma, L., Qiu, Y., Xun, X., Webster, T. J., & Su, M. (2016). Enhancing cancer radiation therapy with cell penetrating peptide modified gold nanoparticles. Austin Journal of Biomedical Engineering, 3(id1033), 1031–1038.

    Google Scholar 

  87. Hainfeld, J. F., & Smilowitz, H. M. (2015). Nuclear targeted gold nanoparticles for radiation enhancement. Cancer Research, 75, Abstract 1807.

    Article  Google Scholar 

  88. Cormode, D. P., Naha, P. C., & Fayad, Z. A. (2014). Nanoparticle contrast agents for computed tomography: A focus on micelles. Contrast Media & Molecular Imaging, 9, 37–52.

    Article  CAS  Google Scholar 

  89. Xu, C. J., Tung, G. A., & Sun, S. H. (2008). Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chemistry of Materials, 20, 4167–4169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Cheong, S. K., Jones, B. L., Siddiqi, A. K., Liu, F., Manohar, N., & Cho, S. H. (2010). X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects using 110 kVp x-rays. Physics in Medicine and Biology, 55, 647–662.

    Article  PubMed  CAS  Google Scholar 

  91. Jones, B. L., & Cho, S. H. (2011). The feasibility of polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects: A Monte Carlo study. Physics in Medicine and Biology, 56, 3719–3730.

    Article  PubMed  Google Scholar 

  92. Jones, B., Manohar, N., Karellas, A., & Cho, S. (2012). Polychromatic cone-beam X-ray fluorescence computed tomography of gold nanoparticle-loaded objects. Medical Physics, 39, 3986–3987.

    Article  Google Scholar 

  93. Manohar, N., Reynoso, F. J., & Cho, S. H. (2013). Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source. Medical Physics, 40, 080702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Manohar, N., Jones, B. L., & Cho, S. H. (2014). Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study. Medical Physics, 41, 101906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Meng, L., Fu, G., Li, N., Newville, M., Eng, P., & La Riviere, P. (2010). X-ray fluorescence tomography using imaging detectors. Proceedings of SPIE, 7804, B1–B9.

    Google Scholar 

  96. Wen, H., Bennett, E. E., Hegedus, M. A., & Carroll, S. C. (2008). Spatial harmonic imaging of X-ray scattering initial results. IEEE Transactions on Medical Imaging, 27, 997–1002.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bazalova, M., Kuang, Y., Pratx, G., & Xing, L. (2012). Investigation of X-ray fluorescence computed tomography (XFCT) and K-edge imaging. IEEE Transactions on Medical Imaging, 31, 1620–1627.

    Article  PubMed  Google Scholar 

  98. Bazalova, M., Weil, M. D., Wilfley, B., & Graves, E. E. (2012). Monte Carlo model of the scanning beam digital x-ray (SBDX) source. Physics in Medicine and Biology, 57, 7381–7394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kuang, Y., Pratx, G., Bazalova, M., Meng, B. W., Qian, J. G., & Xing, L. (2013). First demonstration of multiplexed X-ray fluorescence computed tomography (XFCT) imaging. IEEE Transactions on Medical Imaging, 32, 262–267.

    Article  PubMed  Google Scholar 

  100. Guo, R., Wang, H., Peng, C., Shen, M. W., Pan, M. J., Cao, X. Y., Zhang, G. X., & Shi, X. Y. (2010). X-ray attenuation property of dendrimer-entrapped gold nanoparticles. Journal of Physical Chemistry C, 114, 50–56.

    Article  CAS  Google Scholar 

  101. Hariri, G., Wellons, M. S., Morris, W. H., Lukehart, C. M., & Hallahan, D. E. (2011). Multifunctional FePt nanoparticles for radiation-guided targeting and imaging of cancer. Annals of Biomedical Engineering, 39, 946–952.

    Article  PubMed  Google Scholar 

  102. Luo, T., Huang, P., Gao, G., Shen, G. X., Fu, S., Cui, D. X., Zhou, C. Q., & Ren, Q. S. (2011). Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Optics Express, 19, 17030–17039.

    Article  PubMed  CAS  Google Scholar 

  103. Rand, D., Ortiz, V., Liu, Y. A., Derdak, Z., Wands, J. R., Taticek, M., & Rose-Petruck, C. (2011). Nanomaterials for X-ray imaging: Gold nanoparticle enhancement of X-ray scatter imaging of hepatocellular carcinoma. Nano Letters, 11, 2678–2683.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Guo, T., & Davidson, R. A. (2016). Nanoparticle assisted scanning focusing X-ray fluorescence imaging and enhanced treatment. Radiat Res. 185, 87-95.

    Google Scholar 

  105. Guo, T., & Davidson, R. A. (2015). Nanoparticle assisted scanning focusing X-ray fluorescence imaging and enhanced treatment. Patent publication number: WO/2015/031675; international application number: PCT/US2014/053259. Publication date: May 03, 2015. 

    Google Scholar 

  106. Boote, E., Fent, G., Kattumuri, V., Casteel, S., Katti, K., Chanda, N., Kannan, R., Katti, K., & Churchill, R. (2010). Gold nanoparticle contrast in a phantom and juvenile swine: Models for molecular imaging of human organs using X-ray computed tomography. Academic Radiology, 17, 410–417.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hainfeld, J. F., Slatkin, D. N., Focella, T. M., & Smilowitz, H. M. (2006). Gold nanoparticles: A new X-ray contrast agent. The British Journal of Radiology, 79, 248–253.

    Article  CAS  PubMed  Google Scholar 

  108. Hainfeld, J. F., Smilowitz, H. M., O'Connor, M. J., Dilmanian, F. A., & Slatkin, D. N. (2013). Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine, 8, 1601–1609.

    Article  PubMed  CAS  Google Scholar 

  109. Alric, C., Taleb, J., Le Duc, G., Mandon, C., Billotey, C., Le Meur-Herland, A., Brochard, T., Vocanson, F., Janier, M., Perriat, P., et al. (2008). Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. Journal of the American Chemical Society, 130, 5908–5915.

    Article  PubMed  CAS  Google Scholar 

  110. Yusa, N., Jiang, M., Mizuno, K., & Uesaka, M. (2009). Numerical evaluation of the effectiveness of colloidal gold as a contrast agent. Radiological Physics and Technology, 2, 33–39.

    Article  PubMed  Google Scholar 

  111. Jones, B. L., Manohar, N., Reynoso, F., Karellas, A., & Cho, S. H. (2012). Experimental demonstration of benchtop x-ray fluorescence computed tomography (XFCT) of gold nanoparticle-loaded objects using lead- and tin-filtered polychromatic cone-beams. Physics in Medicine and Biology, 57, N457–N467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Kim, D., Jeong, Y. Y., & Jon, S. (2010). A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 4, 3689–3696.

    Article  PubMed  CAS  Google Scholar 

  113. van Schooneveld, M. M., Cormode, D. P., Koole, R., van Wijngaarden, J. T., Calcagno, C., Skajaa, T., Hilhorst, J., 't Hart, D. C., Fayad, Z. A., Mulder, W. J. M., et al. (2010). A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging. Contrast Media & Molecular Imaging, 5, 231–236.

    Article  CAS  Google Scholar 

  114. Manohar, N. (2011). Effect of source X-ray energy spectra on the detection of fluorescence photons from gold nanoparticles. Medical Physics, Georgia Institute of Technology, Atlanta, Vol. M.S., p. 38.

    Google Scholar 

  115. Le Duc, G., Miladi, I., Alric, C., Mowat, P., Brauer-Krisch, E., Bouchet, A., Khalil, E., Billotey, C., Janier, M., Lux, F., et al. (2011). Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano, 5, 9566–9574.

    Article  PubMed  CAS  Google Scholar 

  116. Smith, L., Kuncic, Z., Ostrikov, K., & Kumar, S. (2012). Nanoparticles in cancer imaging and therapy. Journal of Nanomaterials, 891318, 1–7.

    Article  CAS  Google Scholar 

  117. Kunzel, R., Okuno, E., Levenhagen, R. S., & Umisedo, N. K. (2013). Evaluation of the X-ray absorption by gold nanoparticles solutions. Nanotechnology, 5(865283), 203.

    Google Scholar 

  118. Tu, S. J., Yang, P. Y., Hong, J. H., & Lo, C. J. (2013). Quantitative dosimetric assessment for effect of gold nanoparticles as contrast media on radiotherapy planning. Radiation Physics and Chemistry, 88, 14–20.

    Article  CAS  Google Scholar 

  119. Rivera, E. J., Tran, L. A., Hernandez-Rivera, M., Yoon, D., Mikos, A. G., Rusakova, I. A., Cheong, B. Y., Cabreira-Hansen, M. D., Willerson, J. T., Perin, E. C., et al. (2013). Bismuth@US-tubes as a potential contrast agent for X-ray imaging applications. Journal of Materials Chemistry B, 1, 4792–4800.

    Article  CAS  Google Scholar 

  120. Cole, L. E., Vargo-Gogola, T., & Roeder, R. K. (2014). Contrast-enhanced X-ray detection of breast microcalcifications in a murine model using targeted gold nanoparticles. ACS Nano, 8, 7486–7496.

    Article  PubMed  CAS  Google Scholar 

  121. Deyhimihaghighi, N., Mohd Noor, N., Soltani, N., Jorfi, R., Erfani Haghir, M., Adenan, M. Z., Saion, E., & Khandaker, M. U. (2014). Contrast enhancement of magnetic resonance imaging (MRI) of polymer gel dosimeter by adding Platinum nano-particles. Journal of Physics: Conference Series, 546, 012013.

    Google Scholar 

  122. Xia, H. X., Yang, X. Q., Song, J. T., Chen, J., Zhang, M. Z., Yan, D. M., Zhang, L., Qin, M. Y., Bai, L. Y., Zhao, Y. D., et al. (2014). Folic acid-conjugated silica-coated gold nanorods and quantum dots for dual-modality CT and fluorescence imaging and photothermal therapy. Journal of Materials Chemistry B, 2, 1945–1953.

    Article  CAS  PubMed  Google Scholar 

  123. Wathen, C. A., Caldwell, C., Chanda, N., Upendran, A., Zambre, A., Afrasiabi, Z., Chapaman, S. E., Foje, N., Leevy, W. M., & Kannan, R. (2015). Selective X-ray contrast enhancement of the spleen of living mice mediated by gold nanorods. Contrast Media & Molecular Imaging, 10, 188–193.

    Article  CAS  Google Scholar 

  124. Rand, D., Derdak, Z., Carlson, R., Wands, J. R., & Rose-Petruck, C. (2015). X-ray scatter imaging of hepatocellular carcinoma in a mouse model using nanoparticle contrast agents. Scientific Reports, 5, 15673.

    Google Scholar 

  125. McQuade, C., Al Zaki, A., Desai, Y., Vido, M., Sakhuja, T., Cheng, Z. L., Hickey, R. J., Joh, D., Park, S. J., Kao, G., et al. (2015). A multifunctional nanoplatform for imaging, radiotherapy, and the prediction of therapeutic response. Small, 11, 834–843.

    Article  PubMed  CAS  Google Scholar 

  126. Elmenoufy, A. H., Tang, Y. A., Hu, J., Xu, H. B., & Yang, X. L. (2015). A novel deep photodynamic therapy modality combined with CT imaging established via X-ray stimulated silica-modified lanthanide scintillating nanoparticles. Chemical Communications, 51, 12247–12250.

    Article  PubMed  CAS  Google Scholar 

  127. Lv, R. C., Yang, P. P., He, F., Gai, S. L., Li, C. X., Dai, Y. L., Yang, G. X., & Lin, J. (2015). A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano, 9, 1630–1647.

    Article  PubMed  CAS  Google Scholar 

  128. Kim, T., Lee, N., Arifin, D. R., Shats, I., Janowski, M., Walczak, P., Hyeon, T., & Bulte, J. W. M. (2017). In vivo micro-CT imaging of human mesenchymal stem cells labeled with gold-poly-l-lysine nanocomplexes. Advanced Functional Materials, 27, 1604213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Duan, S., Yang, Y. J., Zhang, C. L., Zhao, N. N., & Xu, F. J. (2017). NIR-responsive polycationic gatekeeper-cloaked hetero-nanoparticles for multimodal imaging-guided triple-combination therapy of cancer. Small, 13, 1603133.

    Article  CAS  Google Scholar 

  130. Wathen, C. A., Foje, N., van Avermaete, T., Miramontes, B., Chapaman, S. E., Sasser, T. A., Kannan, R., Gerstler, S., & Leevy, W. M. (2013). In vivo X-ray computed tomographic imaging of soft tissue with native, intravenous, or oral contrast. Sensors, 13, 6957–6980.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Liu, X., Zhang, X., Zhu, M., Lin, G. H., Liu, J., Zhou, Z. F., Tian, X., & Pan, Y. (2017). PEGylated au@Pt nanodendrites as novel theranostic agents for computed tomography imaging and photothermal/radiation synergistic therapy. ACS Applied Materials & Interfaces, 9, 279–285.

    Article  CAS  Google Scholar 

  132. Mieszawska, A. J., Mulder, W. J. M., Fayad, Z. A., & Cormode, D. P. (2013). Multifunctional gold nanoparticles for diagnosis and therapy of disease. Molecular Pharmaceutics, 10, 831–847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Jakhmola, A., Anton, N., & Vandamme, T. F. (2012). Inorganic nanoparticles based contrast agents for X-ray computed tomography. Advanced Healthcare Materials, 1, 413–431.

    Article  PubMed  CAS  Google Scholar 

  134. Cole, L. E., Ross, R. D., Tilley, J. M. R., Vargo-Gogola, T., & Roeder, R. K. (2015). Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine, 10, 321–341.

    Article  PubMed  CAS  Google Scholar 

  135. Liu, Y. L., Liu, J. H., Ai, K. L., Yuan, Q. H., & Lu, L. H. (2014). Recent advances in ytterbium-based contrast agents for in vivo X-ray computed tomography imaging: Promises and prospects. Contrast Media & Molecular Imaging, 9, 26–36.

    Article  CAS  Google Scholar 

  136. Gao, Y. P., & Li, Y. S. (2016). Gold nanostructures for cancer imaging and therapy. In Z. Dai (Ed.), Advances in nanotheranostics I, Springer Series in Biomaterials Science and Engineering (Vol. 6, pp. 53–101). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  137. Patel, L. N., Zaro, J. L., & Shen, W. C. (2007). Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives. Pharmaceutical Research, 24, 1977–1992.

    Article  PubMed  CAS  Google Scholar 

  138. Cesbron, Y., See, V., Free, P., Nativo, P., Shaheen, U., Rigden, D. J., Spiller, D. G., Fernig, D. G., White, M. R. H., Prior, I. A., et al. (2010). Intracellular delivery and fate of peptide-capped gold nanoparticles. Biophysical Journal, 98, 203a.

    Article  Google Scholar 

  139. Popovtzer, R., Agrawal, A., Kotov, N. A., Popovtzer, A., Balter, J., Carey, T. E., & Kopelman, R. (2008). Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Letters, 8, 4593–4596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Cole, L. E., Vargo-Gogola, T., & Roeder, R. K. (2014). Bisphosphonate-functionalized gold nanoparticles for contrast-enhanced X-ray detection of breast microcalcifications. Biomaterials, 35, 2312–2321.

    Article  PubMed  CAS  Google Scholar 

  141. Zhang, X. D., Wu, D., Shen, X., Chen, J., Sun, Y. M., Liu, P. X., & Liang, X. J. (2012). Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials, 33, 6408–6419.

    Article  PubMed  CAS  Google Scholar 

  142. Cho, S. H. (2005). Estimation of tumor dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Medical Physics, 32, 2162–2162.

    Article  Google Scholar 

  143. McMahon, S. J., Mendenhall, M. H., Jain, S., & Currell, F. (2008). Radiotherapy in the presence of contrast agents: A general figure of merit and its application to gold nanoparticles. Physics in Medicine and Biology, 53, 5635–5651.

    Article  PubMed  Google Scholar 

  144. Gokeri, G., Kocar, C., & Tombakoglu, M. (2010). Monte Carlo simulation of microbeam radiation therapy with an interlaced irradiation geometry and an Au contrast agent in a realistic head phantom. Physics in Medicine and Biology, 55, 7469–7487.

    Article  PubMed  Google Scholar 

  145. Lechtman, E., Chattopadhyay, N., Cai, Z., Mashouf, S., Reilly, R., & Pignol, J. P. (2011). Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Physics in Medicine and Biology, 56, 4631–4647.

    Article  PubMed  CAS  Google Scholar 

  146. Martinez-Rovira, I., & Prezado, Y. (2011). Monte Carlo dose enhancement studies in microbeam radiation therapy. Medical Physics, 38, 4430–4439.

    Article  PubMed  CAS  Google Scholar 

  147. Ngwa, W., Makrigiorgos, G. M., & Berbeco, R. I. (2012). Gold nanoparticle enhancement of stereotactic radiosurgery for neovascular age-related macular degeneration. Physics in Medicine and Biology, 57, 6371–6380.

    Article  PubMed  CAS  Google Scholar 

  148. Lechtman, E., Mashouf, S., Chattopadhyay, N., Keller, B. M., Lai, P., Cai, Z., Reilly, R. M., & Pignol, J. P. (2013). A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness. Physics in Medicine and Biology, 58, 3075–3087.

    Article  PubMed  CAS  Google Scholar 

  149. Amato, E., Italiano, A., Leotta, S., Pergolizzi, S., & Torrisi, L. (2013). Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels. Journal of X-Ray Science and Technology, 21, 237–247.

    PubMed  CAS  Google Scholar 

  150. Mesbahi, A., Jamali, F., & Gharehaghaji, N. (2013). Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy. BioImpacts: BI, 29-35(29), 3.

    Google Scholar 

  151. Jeynes, J. C. G., Merchant, M. J., Spindler, A., Wera, A. C., & Kirkby, K. J. (2014). Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Physics in Medicine and Biology, 59, 6431–6443.

    Article  PubMed  CAS  Google Scholar 

  152. Li, W. B., Müllner, M., Greiter, M. B., Bissardon, C., Xie, W. Z., Schlattl, H., Oeh, U., Li, J. L., & Hoeschen, C.. (2014). Monte Carlo simulations of dose enhancement around gold nanoparticles used as X-ray imaging contrast agents and radiosensitizers. Medical Imaging 2014: Physics of Medical Imaging. Proceedings of SPIE, 9033, 90331K.

    Google Scholar 

  153. Wardlow, N., Polin, C., Villagomez-Bernabe, B., & Currell, F. (2015). A simple model to quantify radiolytic production following electron emission from heavy-atom nanoparticles irradiated in liquid suspensions. Radiation Research, 184, 518–532.

    Article  PubMed  CAS  Google Scholar 

  154. Xie, W. Z., Friedland, W., Li, W. B., Li, C. Y., Oeh, U., Qiu, R., Li, J. L., & Hoeschen, C. (2015). Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays. Physics in Medicine and Biology, 60, 6195–6212.

    Article  PubMed  CAS  Google Scholar 

  155. Ferrero, V., Visona, G., Dalmasso, F., Gobbato, A., Cerello, P., Strigari, L., Visentin, S., & Attili, A. (2017). Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 1: A radiobiological model study. Medical Physics, 44, 1983–1992.

    Article  PubMed  CAS  Google Scholar 

  156. Sung, W. M., Ye, S. J., McNamara, A. L., McMahon, S. J., Hainfeld, J., Shin, J., Smilowitz, H. M., Paganetti, H., & Schuemann, J. (2017). Dependence of gold nanoparticle radiosensitization on cell geometry. Nanoscale, 9, 5843–5853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Zabihzadeh, M., Moshirian, T., Ghorbani, M., Knaup, C., & Behrooz, M. A. (2016). A Monte Carlo study on dose enhancement by homogenous and inhomogeneous distributions of gold nanoparticles in radiotherapy with low energy X-rays. Journal of Biomedical Physics and Engineering, I–XVI.

    Google Scholar 

  158. Zygmanski, P., & Sajo, E. (2016). Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays. The British Journal of Radiology, 89, 20150200.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Oliver, P. A. K., & Thomson, R. M. (2017). A Monte Carlo study of macroscopic and microscopic dose descriptors for kilovoltage cellular dosimetry. Physics in Medicine and Biology, 62, 1417–1437.

    Article  PubMed  CAS  Google Scholar 

  160. Lee, C., Cheng, N. N., Davidson, R. A., & Guo, T. (2012). Geometry enhancement of nanoscale energy deposition by X-rays. Journal of Physical Chemistry C, 116, 11292–11297.

    Article  CAS  Google Scholar 

  161. Ma, L., Zou, X. J., Bui, B., Chen, W., Song, K. H., & Solberg, T. (2014). X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation. Applied Physics Letters, 105, 013702.

    Article  CAS  Google Scholar 

  162. Huang, F. K., Chen, W. C., Lai, S. F., Liu, C. J., Wang, C. L., Wang, C. H., Chen, H. H., Hua, T. E., Cheng, Y. Y., Wu, M. K., et al. (2010). Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles. Physics in Medicine and Biology, 55, 469–482.

    Article  PubMed  CAS  Google Scholar 

  163. Zou, X. J., Yao, M. Z., Ma, L., Hossu, M., Han, X. M., Juzenas, P., & Chen, W. (2014). X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine, 9, 2339–2351.

    Article  PubMed  CAS  Google Scholar 

  164. McQuaid, H. N., Muir, M. F., Taggart, L. E., McMahon, S. J., Coulter, J. A., Hyland, W. B., Jain, S., Butterworth, K. T., Schettino, G., Prise, K. M., et al. (2016). Imaging and radiation effects of gold nanoparticles in tumour cells. Scientific Reports, 6, 19442.

    Google Scholar 

  165. Detappe, A., Thomas, E., Tibbitt, M. W., Kunjachan, S., Zavidij, O., Parnandi, N., Reznichenko, E., Lux, F., Tillemen, O., & Berbeco, R. (2017). Ultrasmall silica-based bismuth gadolinium nanoparticles for dual magnetic resonance-computed tomography image guided radiation therapy. Nano Letters, 17, 1733–1740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Stefancikova, L., Lacombe, S., Salado, D., Porcel, E., Pagacova, E., Tillement, O., Lux, F., Depes, D., Kozubek, S., & Falk, M. (2016). Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. Journal of Nanbiotechnology, 14, 63.

    Google Scholar 

  167. Clement, S., Chen, W. J., Anwer, A. G., & Goldys, E. M. (2017). Verteprofin conjugated to gold nanoparticles for fluorescent cellular bioimaging and X-ray mediated photodynamic therapy. Microchimica Acta, 184, 1765–1771.

    Article  CAS  Google Scholar 

  168. Ghaemi, B., Mashinchian, O., Mousavi, T., Karimi, R., Kharrazi, S., & Amani, A. (2016). Harnessing the cancer radiation therapy by lanthanide-doped zinc oxide based theranostic nanoparticles. ACS Applied Materials & Interfaces, 8, 3123–3134.

    Article  CAS  Google Scholar 

  169. Khoei, S., Mahdavi, S. R., Fakhimikabir, H., Shakeri-Zadeh, A., & Hashemian, A. (2014). The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. International Journal of Radiation Biology, 90, 351–356.

    Article  PubMed  CAS  Google Scholar 

  170. Brown, R., Tehei, M., Oktaria, S., Briggs, A., Stewart, C., Konstantinov, K., Rosenfeld, A., Corde, S., & Lerch, M. (2014). High-Z nanostructured ceramics in radiotherapy: First evidence of Ta2O5-induced dose enhancement on radioresistant cancer cells in an MV photon field. Particle and Particle Systems Characterization, 31, 500–505.

    Article  CAS  Google Scholar 

  171. Kumar, R., Korideck, H., Ngwa, W., Berbeco, R. I., Makrigiorgos, G. M., & Sridhar, S. (2013). Third generation gold nanoplatform optimized for radiation therapy. Translational Cancer Research, 2, 228–239.

    CAS  Google Scholar 

  172. Yousef, I., Seksek, O., Gil, S., Prezado, Y., Sule-Susoe, J., & Martinez-Rovira, I. (2016). Study of the biochemical effects induced by X-ray irradiations in combination with gadolinium nanoparticles in F98 glioma cells: First FTIR studies at the Emira laboratory of the SESAME synchrotron. Analyst, 141, 2238–2249.

    Article  PubMed  CAS  Google Scholar 

  173. Takahashi, J., & Misawa, M. (2007). Analysis of potential radiosensitizing materials for X-ray-induced photodyanmic therapy. NanoBiotechnology, 3, 116–126 116.

    Article  CAS  Google Scholar 

  174. Ngwa, W., Korideck, H., Kassis, A. I., Kumar, R., Sridhar, S., Makrigiorgos, G. M., & Cormack, R. A. (2013). In vitro radiosensitization by gold nanoparticles during continuous low-dose-rate gamma irradiation with I-125 brachytherapy seeds. Nanomedicine-Nanotechnology, 9, 25–27.

    Article  CAS  Google Scholar 

  175. Bao, Z. R., He, M. Y., Quan, H., Jiang, D. Z., Zheng, Y. H., Qin, W. J., Zhou, Y. F., Ren, F., Guo, M. X., & Jiang, C. Z. (2016). FePt nanoparticles: A novel nanoprobe for enhanced HeLa cells sensitivity to chemoradiotherapy. RSC Advances, 6, 35124–35134.

    Article  CAS  Google Scholar 

  176. Kraščākovā, S., Giuliani, A., Lacerda, S., Pallier, A., Mercere, P., Toth, E., & Refregiers, M. (2015). X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: Beyond depth limitations. Nano Research, 8, 2373–2379.

    Article  CAS  Google Scholar 

  177. Rossi, F., Bedogni, E., Bigi, F., Rimoldi, T., Cristofolini, L., Pinelli, S., Alinovi, R., Negri, M., Dhanabalan, S. C., Attolini, G., et al. (2015). Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy. Scientific Reports, 5, 7606.

    Google Scholar 

  178. Nakayama, M., Sasaki, R., Ogino, C., Tanaka, T., Morita, K., Umetsu, M., Ohara, S., Tan, Z. Q., Nishimura, Y., Akasaka, H., et al. (2016). Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiation Oncology, 11, 91.

    Google Scholar 

  179. Huang, C. W., Kearney, V., Moeendarbari, S., Jiang, R. Q., Christensen, P., Tekade, R., Sun, X. K., Mao, W. H., & Hao, Y. W. (2015). Hollow gold nanoparticles as biocompatible radiosensitizer: An in vitro proof of concept study. Journal of Nano Research, 32, 106–U140.

    Article  CAS  Google Scholar 

  180. Jiang, X. Y., Du, B. J., Yu, M. X., Jia, X., & Zheng, J. (2016). Surface-ligand effect on radiosensitization of ultrasmall luminescent gold nanoparticles. Journal of Innovative Optical Health Sciences, 9, 1642003.

    Article  CAS  Google Scholar 

  181. Zhang, X. D., Guo, M. L., Wu, H. Y., Sun, Y. M., Ding, Y. Q., Feng, X., & Zhang, L. A. (2009). Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. International Journal of Nanomedicine, 4, 165–173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Levy, L., Pottier, A., Rouet, A., Marill, J., Devaux, C., & Germain, M. (2009). Inorganic nanoparticles of high density to destroy cells in-vivo, WO2009 147214 A1.

    Google Scholar 

  183. Geng, F., Song, K., Xing, J. Z., Yuan, C. Z., Yan, S., Yang, Q. F., Chen, J., & Kong, B. H. (2011). Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology, 22(285101), 1–8.

    Google Scholar 

  184. Yang, C., Neshatian, M., van Prooijen, M., & Chithrani, D. B. (2014). Cancer nanotechnology: Enhanced therapeutic response using peptide-modified gold nanoparticles. Journal of Nanoscience and Nanotechnology, 14, 4813–4819.

    Article  PubMed  CAS  Google Scholar 

  185. Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.

    Article  PubMed  CAS  Google Scholar 

  186. Hossain, M., Luo, Y., Sun, Z. Y., Wang, C. M., Zhang, M. H., Fu, H. Y., Qiao, Y., & Su, M. (2012). X-ray enabled detection and eradication of circulating tumor cells with nanoparticles. Biosensors & Bioelectronics, 38, 348–354.

    Article  CAS  Google Scholar 

  187. Detappe, A., Rottmann, J., Kunjachan, S., Tillement, O., & Berbeco, R. (2015). Theranostic gadolinium-based AGuIX nanoparticles for MRI-guided radiation therapy. Medical Physics, 42, 3566–3566.

    Article  Google Scholar 

  188. Wang, J. P., Pang, X. J., Tan, X. X., Song, Y. L., Liu, L., You, Q., Sun, Q., Tan, F. P., & Li, N. (2017). A triple-synergistic strategy for combinational photo/radiotherapy and multi-modality imaging based on hyaluronic acid-hybridized polyaniline-coated WS2 nanodots. Nanoscale, 9, 5551–5564.

    Article  PubMed  CAS  Google Scholar 

  189. Hainfeld, J. F., Dilmanian, F. A., Slatkin, D. N., & Smilowitz, H. M. (2008). Radiotherapy enhancement with gold nanoparticles. The Journal of Pharmacy and Pharmacology, 60, 977–985.

    Article  PubMed  CAS  Google Scholar 

  190. Jaboin, J. I., Fu, A., Hariri, G., Han, Z., & Hallahan, D. (2007). Novel radiation-guided nanoparticle drug delivery system for prostate cancer. International Journal of Radiation Oncology, Biology, Physics, 69, S111–S111.

    Article  Google Scholar 

  191. Chang, M. Y., Shiau, A. L., Chen, Y. H., Chang, C. J., Chen, H. H. W., & Wu, C. L. (2008). Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Science, 99, 1479–1484.

    Article  PubMed  CAS  Google Scholar 

  192. Popovtzer, A., Mizrachi, A., Motiei, M., Bragilovski, D., Lubimov, L., Levi, M., Hilly, O., Ben-Aharon, I., & Popovtzer, R. (2016). Actively targeted gold nanoparticles as novel radiosensitizer agents: An in vivo head and neck cancer model. Nanoscale, 8, 2678–2685.

    Article  PubMed  CAS  Google Scholar 

  193. Tseng, S. J., Chien, C. C., Liao, Z. X., Chen, H. H., Kang, Y. D., Wang, C. L., Hwu, Y., & Margaritondo, G. (2012). Controlled hydrogel photopolymerization inside live systems by X-ray irradiation. Soft Matter, 8, 1420–1427.

    Article  CAS  Google Scholar 

  194. Anijdan, S. H. M., Mahdavi, S. R., Shirazi, A., Zarrinfard, M. A., & Hajati, J. (2013). Megavoltage X-ray dose enhancement with gold nanoparticles in tumor bearing mice. International Journal of Molecular and Cellular Medicine (IJMCM), 3, 118–124.

    Google Scholar 

  195. Krishnan, S., Diagaradjane, P., Goudrich, G. P., & Payne, J. D. (2013). Enhancement of radiation therapy by targeted high-Z nanoparticles. US 2013/0225901 A1.

    Google Scholar 

  196. Kunjachan, S., Detappe, A., Kumar, R., Ireland, T., Cameron, L., Biancur, D. E., Motto-Ros, V., Sancey, L., Sridhar, S., Makrigiorgos, G. M., et al. (2015). Nanoparticle mediated tumor vascular disruption: A novel strategy in radiation therapy. Nano Letters, 15, 7488–7496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Fan, W. P., Bu, W. B., Zhang, Z., Shen, B., Zhang, H., He, Q. J., Ni, D. L., Cui, Z. W., Zhao, K. L., Bu, J. W., et al. (2015). X-ray radiation-controlled NO-release for on-demand depth-independent hypoxic radiosensitization. Angewandte Chemie, International Edition, 54, 14026–14030.

    Article  CAS  Google Scholar 

  198. Chen, N., Yang, W. T., Bao, Y., Xu, H. L., Qin, S. B., & Tu, Y. (2015). BSA capped Au nanoparticle as an efficient sensitizer for glioblastoma tumor radiation therapy. RSC Advances, 5, 40514–40520.

    Article  CAS  Google Scholar 

  199. Chen, H. M., Wang, G. D., Chuang, Y. J., Zhen, Z. P., Chen, X. Y., Biddinger, P., Hao, Z. L., Liu, F., Shen, B. Z., Pan, Z. W., et al. (2015). Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Letters, 15, 2249–2256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Zhang, X. D., Luo, Z. T., Chen, J., Song, S. S., Yuan, X., Shen, X., Wang, H., Sun, Y. M., Gao, K., Zhang, L. F., et al. (2015). Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Scientific Reports, 5.

    Google Scholar 

  201. Yi, X., Chen, L., Zhong, X. Y., Gao, R. L., Qian, Y. T., Wu, F., Song, G. S., Chai, Z. F., Liu, Z., & Yang, K. (2016). Core-shell Au@MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. Nano Research, 9, 3267–3278.

    Article  CAS  Google Scholar 

  202. Zhao, N., Yang, Z. R., Li, B. X., Meng, J., Shi, Z. L., Li, P., & Fu, S. (2016). RGD-conjugated mesoporous silica-encapsulated gold nanorods enhance the sensitization of triple-negative breast cancer to megavoltage radiation therapy. International Journal of Nanomedicine, 11, 5595–5610.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Li, M. F., Zhao, Q., Yi, X., Zhong, X. Y., Song, G. S., Chai, Z. F., Liu, Z. A., & Yang, K. (2016). Au@MnS@ZnS core/shell/shell nanoparticles for magnetic resonance imaging and enhanced cancer radiation therapy. ACS Applied Materials & Interfaces, 8, 9557–9564.

    Article  CAS  Google Scholar 

  204. Liu, J. J., Chen, Q., Zhu, W. W., Yi, X., Yang, Y., Dong, Z. L., & Liu, Z. (2017). Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles: A multistage redox/pH/H2O2-responsive cancer theranostic nanoplatform. Advanced Functional Materials, 27, 1605926.

    Article  CAS  Google Scholar 

  205. Smilowitz, H. M., Hainfeld, J. F., Dilmanian, F. A., Zhong, Z., Slatkin, D. N., & Kalef-Ezra, J. A. (2010). Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Physics in Medicine and Biology, 55, 3045–3059.

    Article  PubMed  CAS  Google Scholar 

  206. Chen, W., & Zhang, J. (2006). Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of Nanoscience and Nanotechnology, 6, 1159–1166.

    Article  PubMed  CAS  Google Scholar 

  207. Davidson, R. A., Sugiyama, C., & Guo, T. (2014). Determination of absolute quantum efficiency of X-ray nano phosphors by thin film photovoltaic cells. Analytical Chemistry, 86, 10492–10496.

    Article  PubMed  CAS  Google Scholar 

  208. Alric, C., Serduc, R., Mandon, C., Taleb, J., Le Duc, G., Le Meur-Herland, A., Billotey, C., Perriat, P., Roux, S., & Tillement, O. (2008). Gold nanoparticles designed for combining dual modality imaging and radiotherapy. Gold Bulletin, 41, 90–97.

    Article  CAS  Google Scholar 

  209. Hebert, E. M., Debouttiere, P. J., Lepage, M., Sanche, L., & Hunting, D. J. (2010). Preferential tumour accumulation of gold nanoparticles, visualised by magnetic resonance imaging: Radiosensitisation studies in vivo and in vitro. International Journal of Radiation Biology, 86, 692–700.

    Article  PubMed  CAS  Google Scholar 

  210. Townley, H. E., Rapa, E., Wakefield, G., & Dobson, P. J. (2012). Nanoparticle augmented radiation treatment decreases cancer cell proliferation. Nanomedicine-Nanotechnology, 8, 526–536.

    Article  CAS  Google Scholar 

  211. Townley, H. E., Kim, J., & Dobson, P. J. (2012). In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles. Nanoscale, 4, 5043–5050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Liu, P. D., Jin, H. Z., Guo, Z. R., Ma, J., Zhao, J., Li, D. D., Wu, H., & Gu, N. (2016). Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. International Journal of Nanomedicine, 11, 5003–5013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Lien, J., Peck, K. A., Su, M. Q., & Guo, T. (2016). Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region. Journal of Colloid and Interface Science, 479, 173–181.

    Article  PubMed  CAS  Google Scholar 

  214. Jain, S., Hirst, D. G., & O'Sullivan, J. M. (2012). Gold nanoparticles as novel agents for cancer therapy. The British Journal of Radiology, 85, 101–113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Kotb, S., Detappe, A., Lux, F., Appaix, F., Barbier, E. L., Tran, V. L., Plissonneau, M., Gehan, H., Lefranc, F., Rodriguez-Lafrasse, C., et al. (2016). Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases: Proof of concept before phase I trial. Theranostics, 6, 418–427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Rancoule, C., Magne, N., Vallard, A., Guy, J. B., Rodriguez-Lafrasse, C., Deutsch, E., & Chargari, C. (2016). Nanoparticles in radiation oncology: From bench-side to bedside. Cancer Letters, 375, 256–262.

    Article  PubMed  CAS  Google Scholar 

  217. Norman, A., & Iwamoto, K. S. (1991). Therapy X-ray scanner, 5,008,907.

    Google Scholar 

  218. Uesaka, M., Mizumo, K., Sakumi, A., Meiling, J., Yusa, N., Nishiyama, N., & Nakagawa, K. (2007). Pinpoint KEV/MEV X-ray sources for X-ray drug delivery system. PAC, IEEE, Albuquerque, Vol. THPMN035, p. 2793.

    Google Scholar 

  219. Montenegro, M., Nahar, S. N., Pradhan, A. K., Huang, K., & Yu, Y. (2009). Monte Carlo simulations and atomic calculations for auger processes in biomedical nanotheranostics. The Journal of Physical Chemistry. A, 113, 12364–12369.

    Article  PubMed  Google Scholar 

  220. Zhang, E., Ntumba, K., & Nadeau, J. (2010). Enhanced cytotoxicity of doxorubicin conjugated to ultrasmall au nanoparticles. Nanotechnology, 3, 316–319.

    Google Scholar 

  221. Davidson, R. A., & Guo, T. (2016). Nanoparticle-assisted scanning focusing X-ray therapy with needle beam X rays. Radiation Research, 185, 87–95.

    Article  PubMed  CAS  Google Scholar 

  222. Lukianova-Hleb, E. Y., Ren, X. Y., Sawant, R. R., Wu, X. W., Torchilin, V. P., & Lapotko, D. O. (2014). On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nature Medicine, 20, 778–784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Fan, W. P., Shen, B., Bu, W. B., Zheng, X. P., He, Q. J., Cui, Z. W., Zhao, K. L., Zhang, S. J., & Shi, J. L. (2015). Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization. Chemical Science, 6, 1747–1753.

    Article  PubMed  CAS  Google Scholar 

  224. Fan, W. P., Shen, B., Bu, W. B., Zheng, X. P., He, Q. J., Cui, Z. W., Ni, D. L., Zhao, K. L., Zhang, S. J., & Shi, J. L. (2015). Intranuclear biophotonics by smart design of nuclear-targeting photo−/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials, 69, 89–98.

    Article  PubMed  CAS  Google Scholar 

  225. Koger, B., & Kirkby, C. (2016). Optimization of photon beam energies in gold nanoparticle enhanced arc radiation therapy using Monte Carlo methods. Physics in Medicine and Biology, 61, 8839–8853.

    Article  PubMed  CAS  Google Scholar 

  226. Morita, K., Miyazaki, S., Numako, C., Ikeno, S., Sasaki, R., Nishimura, Y., Ogino, C., & Kondo, A. (2016). Characterization of titanium dioxide nanoparticles modified with polyacrylic acid and H2O2 for use as a novel radiosensitizer. Free Radical Research, 50, 1319–1328.

    Article  PubMed  CAS  Google Scholar 

  227. Moeendarbari, S., Tekade, R., Mulgaonkar, A., Christensen, P., Ramezani, S., Hassan, G., Jiang, R., Oz, O. K., Hao, Y. W., & Sun, X. K. (2016). Theranostic nanoseeds for efficacious internal radiation therapy of unresectable solid tumors. Scientific Reports, 6, 20614.

    Google Scholar 

  228. Chen, Y. Y., Song, G. S., Dong, Z. L., Yi, X., Chao, Y., Liang, C., Yang, K., Cheng, L., & Liu, Z. (2017). Drug-loaded mesoporous tantalum oxide nanoparticles for enhanced synergetic chemoradiotherapy with reduced systemic toxicity. Small, 13, 1602869.

    Article  CAS  Google Scholar 

  229. Chevillard, S., Vielh, P., Campana, F., Bastian, G., & Coppey, J. (1992). Cytotoxic effects and pharmacokinetic analysis of combined Adriamycin and X-ray treatments in human organotypic cell-cultures. Anti-Cancer Drugs, 3, 133–137.

    Article  PubMed  CAS  Google Scholar 

  230. Shibamoto, Y., Zhou, L., Hatta, H., Mori, M., & Nishimoto, S. (2000). A novel class of antitumor prodrug, 1-(2'-oxopropyl)-5-fluorouracil (OFU001), that releases 5-fluorouracil upon hypoxic irradiation. Japanese Journal of Cancer Research, 91, 433–438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Mueller, A., Bondurant, B., & O'Brien, D. F. (2000). Visible-light-stimulated destabilization of PEG-liposomes. Macromolecules, 33, 4799–4804.

    Article  CAS  Google Scholar 

  232. Spratt, T., Bondurant, B., & O'Brien, D. F. (2003). Rapid release of liposomal contents upon photoinitiated destabilization with UV exposure. Biochimica et Biophysica Acta-Biomembranes, 1611, 35–43.

    Article  CAS  Google Scholar 

  233. Lopez, E., Obrien, D. F., & Whitesides, T. H. (1982). Structural effects on the photo-polymerization of bilayer-membranes. Journal of the American Chemical Society, 104, 305–307.

    Article  CAS  Google Scholar 

  234. Yavlovich, A., Smith, B., Gupta, K., Blumenthal, R., & Puri, A. (2010). Light-sensitive lipid-based nanoparticles for drug delivery: Design principles and future considerations for biological applications. Molecular Membrane Biology, 27, 364–381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Puri, A., & Blumenthal, R. (2011). Polymeric lipid assemblies as novel theranostic tools. Accounts of Chemical Research, 44, 1071–1079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Faisant, N., Siepmann, J., Oury, P., Laffineur, V., Bruna, E., Haffner, J., & Benoit, J. P. (2002). The effect of gamma-irradiation on drug release from bioerodible microparticles: A quantitative treatment. International Journal of Pharmaceutics, 242, 281–284.

    Article  PubMed  CAS  Google Scholar 

  237. Roullin, V. G., Mege, M., Lemaire, L., Cueyssac, J. P., Venier-Julienne, M. C., Menei, P., Gamelin, E., & Benoit, J. P. (2004). Influence of 5-fluorouracil-loaded microsphere formulation on efficient rat glioma radiosensitization. Pharmaceutical Research, 21, 1558–1563.

    Article  PubMed  CAS  Google Scholar 

  238. Fologea, E., Salamo, G., Henry, R., Borrelli, M. J., & Corry, P. M. (2010). Method of controlling drug release from a liposome carrier. US patent application number: US20120041357A1; priority date: Mar. 31, 2009. 

    Google Scholar 

  239. Fologea, D., Salamo, G., Henry, R., Borrelli, M. J., & Corry, P. M. (2010). Method of controlled drug release from a liposome carrier, United State Patent: US 8808733 B2. Issued date: Aug. 19, 2014. 

    Google Scholar 

  240. Juzenas, P., Chen, W., Sun, Y. P., Coelho, M. A. N., Generalov, R., Generalova, N., & Christensen, I. L. (2008). Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Advanced Drug Delivery Reviews, 60, 1600–1614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Kobayashi, K., Usami, N., Porcel, E., Lacombe, S., & Le Sech, C. (2010). Enhancement of radiation effect by heavy elements. Mutation Research, Reviews in Mutation Research, 704, 123–131.

    Article  CAS  Google Scholar 

  242. Jelveh, S., & Chithrani, D. B. (2011). Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancer, 3, 1081–1110.

    Article  CAS  Google Scholar 

  243. Dreaden, E. C., Alkilany, A. M., Huang, X. H., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews, 41, 2740–2779.

    Article  PubMed  CAS  Google Scholar 

  244. Coulter, J. A., Butterworth, K. T., & Jain, S. (2015). Prostate cancer radiotherapy: Potential applications of metal nanoparticles for imaging and therapy. The British Journal of Radiology, 88, 20150256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Dorsey, J. F., Sun, L., Joh, D. Y., Witztum, A., Al Zaki, A., Kao, G. D., Alonso-Basanta, M., Avery, S., Tsourkas, A., & Hahn, S. M. (2013). Gold nanoparticles in radiation research: Potential applications for imaging and radiosensitization. Translational Cancer Research, 2, 280–291.

    PubMed  CAS  Google Scholar 

  246. Kwatra, D., Venugopal, A., & Anant, S. (2013). Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer. Translational Cancer Research, 2, 330–342.

    CAS  Google Scholar 

  247. Su, X. Y., Liu, P. D., Wu, H., & Gu, N. (2014). Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biology & Medicine, 11, 86–91.

    CAS  Google Scholar 

  248. Retif, P., Pinel, S., Toussaint, M., Frochot, C., Chouikrat, R., Bastogne, T., & Barberi-Heyob, M. (2015). Nanoparticles for radiation therapy enhancement: The key parameters. Theranostics, 5, 1030–1045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Brun, E., & Sicard-Roselli, C. (2016). Actual questions raised by nanoparticle radiosensitization. Radiation Physics and Chemistry, 128, 134–142.

    Article  CAS  Google Scholar 

  250. Haume, K., Rosa, S., Grellet, S., Smialek, M. A., Butterworth, K. T., Solov'yov, A. V., Prise, K. M., Golding, J., & Mason, N. J. (2016). Gold nanoparticles for cancer radiotherapy: A review. Cancer Nanotechnology, 7, 8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Rosa, S., Connolly, C., Schettino, G., Butterworth, K. T., & Prise, K. (2017). Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnology, 8(1).

    Google Scholar 

  252. Her, S., Jaffray, D. A., & Allen, C. (2017). Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced Drug Delivery Reviews, 109, 84–101.

    Article  PubMed  CAS  Google Scholar 

  253. Cho, S. H., & Krishnan, S. (2013). Cancer nanotechnology: Principles and applications of radiation oncology, W. R. Hendee (p. 284). Boca Raton: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, T. (2018). Medical Applications of X-Ray Nanochemistry. In: X-ray Nanochemistry. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-78004-7_9

Download citation

Publish with us

Policies and ethics