Skip to main content

Nanomaterials for X-Ray Nanochemistry

  • Chapter
  • First Online:
X-ray Nanochemistry

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This chapter discusses several topics related to the nanomaterials used in X-ray nanochemistry. The first topic is nanomaterials employed in enhancement measurements. Nanomaterials are discussed based on their size, shape, aggregation, and complexity. Surfactants and surface reactions related to surfactants on the surface of nanomaterial is discussed as the second topic. Three categories of reactions are proposed and described, and at least three types of reactions are associated with the first category of reactions linking surfactants to nanomaterials. Nanomaterials characterization methods are briefly discussed.

It takes strength to speak one’s mind. It takes skill to communicate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foley, E., Carter, J., Shan, F., & Guo, T. (2005). Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 3192–3194.

    Google Scholar 

  2. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-Derivatised gold nanoparticles in a 2-phase liquid-liquid system. Journal of the Chemical Society, Chemical Communications, 0, 801–802.

    Article  CAS  Google Scholar 

  3. Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology, 49, N309–N315.

    Article  CAS  PubMed  Google Scholar 

  4. Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6, 662–668.

    Article  CAS  PubMed  Google Scholar 

  5. Hainfeld, J. F., Smilowitz, H. M., O’Connor, M. J., Dilmanian, F. A., & Slatkin, D. N. (2013). Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine, 8, 1601–1609.

    Article  CAS  PubMed  Google Scholar 

  6. Ozin, G. A., & Arsenault, A. C. (2005). Nanochemistry: A chemical approach to nanomaterials. Cambridge, UK: RSC Publishing.

    Google Scholar 

  7. Dreaden, E. C., Alkilany, A. M., Huang, X. H., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews, 41, 2740–2779.

    Article  CAS  PubMed  Google Scholar 

  8. Brust, M., & Kiely, C. J. (2002). Some recent advances in nanostructure preparation from gold and silver particles: A short topical review. Colloid and Surface A, 202, 175–186.

    Article  CAS  Google Scholar 

  9. Kim, B., Han, G., Toley, B. J., Kim, C. K., Rotello, V. M., & Forbes, N. S. (2010). Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nature Nanotechnology, 5, 465–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, X. D., Luo, Z. T., Chen, J., Song, S. S., Yuan, X., Shen, X., Wang, H., Sun, Y. M., Gao, K., Zhang, L. F., et al. (2015). Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Scientific Reports UK, 5, 8669.

    Article  CAS  Google Scholar 

  11. Tien, J., Terfort, A., & Whitesides, G. M. (1997). Microfabrication through electrostatic self-assembly. Langmuir, 13, 5349–5355.

    Article  CAS  Google Scholar 

  12. McIntosh, C. M., Esposito, E. A., Boal, A. K., Simard, J. M., Martin, C. T., & Rotello, V. M. (2001). Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. Journal of the American Chemical Society, 123, 7626–7629.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng, N. N., Starkewolf, Z., Davidson, A. R., Sharmah, A., Lee, C., Lien, J., & Guo, T. (1950). Chemical enhancement by nanomaterials under X-ray irradiation. Journal of the Chemical Society, Communications, 2012(134), 1950–1953.

    Google Scholar 

  14. Duff, D., Baiker, A., Gameson, I., & Edwards, P. (1993). A new hydrosol of gold clusters .2. A comparison of some different measurement techniques. Langmuir, 9, 2310–2317.

    Article  CAS  Google Scholar 

  15. Duff, D. G., Baiker, A., & Edwards, P. P. (1993). A new hydrosol of gold clusters .1. Formation and particle-size variation. Langmuir, 9, 2301–2309.

    Article  CAS  Google Scholar 

  16. Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55–75.

    Article  Google Scholar 

  17. Starkewolf, Z. B., Miyachi, L., Wong, J., & Guo, T. (2013). X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chemical Communications, 49, 2545–2547.

    Article  CAS  PubMed  Google Scholar 

  18. Perrault, S. D., & Chan, W. C. W. (2009). Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. Journal of the American Chemical Society, 131, 17042–17043.

    Article  CAS  PubMed  Google Scholar 

  19. Davidson, R. A., & Guo, T. (2014). Average physical enhancement by nanomaterials under X-ray irradiation. Journal of Physical Chemistry C, 118, 30221–30228.

    Article  CAS  Google Scholar 

  20. Wang, C. H., Hua, T. E., Chien, C. C., Yu, Y. L., Yang, T. Y., Liu, C. J., Leng, W. H., Hwu, Y., Yang, Y. C., Kim, C. C., et al. (2007). Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction. Materials Chemistry and Physics, 106, 323–329.

    Article  CAS  Google Scholar 

  21. Liu, C. J., Wang, C. H., Chien, C. C., Yang, T. Y., Chen, S. T., Leng, W. H., Lee, C. F., Lee, K. H., Hwu, Y., Lee, Y. C., et al. (2008). Enhanced x-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotechnology, 19, 1–5. Article ID 295104.

    CAS  Google Scholar 

  22. Liu, C. J., Wang, C. H., Chen, S. T., Chen, H. H., Leng, W. H., Chien, C. C., Wang, C. L., Kempson, I. M., Hwu, Y., Lai, T. C., et al. (2010). Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Physics in Medicine and Biology, 55, 931–945.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar, R., Korideck, H., Ngwa, W., Berbeco, R. I., Makrigiorgos, G. M., & Sridhar, S. (2013). Third generation gold nanoplatform optimized for radiation therapy. Translational Cancer Research, 2, 228.

    CAS  Google Scholar 

  24. Wang, C. H., Chien, C. C., Yu, Y. L., Liu, C. J., Lee, C. F., Chen, C. H., Hwu, Y., Yang, C. S., Je, J. H., & Margaritondo, G. (2007). Structural properties of ‘naked’ gold nanoparticles formed by synchrotron X-ray irradiation. Journal of Synchrotron Radiation, 14, 477–482.

    Article  CAS  PubMed  Google Scholar 

  25. Merga, G., Saucedo, N., Cass, L. C., Puthussery, J., & Meisel, D. (2010). “Naked” gold nanoparticles: Synthesis, characterization, catalytic hydrogen evolution, and SERS. Journal of Physical Chemistry C, 114, 14811–14818.

    Article  CAS  Google Scholar 

  26. Evanoff, D. D., & Chumanov, G. (2005). Synthesis and optical properties of silver nanoparticles and arrays. Chemphyschem, 6, 1221–1231.

    Article  CAS  PubMed  Google Scholar 

  27. Ziegler, C., & Eychmuller, A. (2011). Seeded growth synthesis of uniform gold nanoparticles with diameters of 15-300 nm. Journal of Physical Chemistry C, 115, 4502–4506.

    Article  CAS  Google Scholar 

  28. Bastús, N. G., Comenge, J., & Puntes, V. (2011). Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus Ostwald ripening. Langmuir, 27, 11098–11105.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, X. K., Xu, H. L., Xia, H. B., & Wang, D. Y. (2012). Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction. Langmuir, 28, 13720–13726.

    Article  CAS  PubMed  Google Scholar 

  30. Song, H., Rioux, R. M., Hoefelmeyer, J. D., Komor, R., Niesz, K., Grass, M., Yang, P. D., & Somorjai, G. A. (2006). Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties. Journal of the American Chemical Society, 128, 3027–3037.

    Article  CAS  PubMed  Google Scholar 

  31. Porter, R., Shan, F., & Guo, T. (2005). Coherent anti-stokes Raman scattering microscopy with spectrally tailored ultrafast pulses. The Review of Scientific Instruments, 76, 043108.

    Article  CAS  Google Scholar 

  32. Jin, R. C., Jureller, J. E., Kim, H. Y., & Scherer, N. F. (2005). Correlating second harmonic optical responses of single Ag nanoparticles with morphology. Journal of the American Chemical Society, 127, 12482–12483.

    Article  CAS  PubMed  Google Scholar 

  33. Solomon, S. D., Bahadory, M., Jeyarajasingam, A. V., Rutkowsky, S. A., Boritz, C., & Mulfinger, L. (2007). Synthesis and study of silver nanoparticles. Journal of Chemical Education, 84, 322–325.

    Article  CAS  Google Scholar 

  34. Yu, X. J., Li, A., Zhao, C. Z., Yang, K., Chen, X. Y., & Li, W. W. (2017). Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy. ACS Nano, 11, 3990–4001.

    Article  CAS  PubMed  Google Scholar 

  35. Davidson, R. A., & Guo, T. (2012). An example of X-ray nanochemistry: SERS investigation of polymerization enhanced by nanostructures under X-ray irradiation. Journal of Physical Chemistry Letters, 3, 3271–3275.

    Article  CAS  Google Scholar 

  36. Sharmah, A., Yao, Z., Lu, L., & Guo, T. (2016). X-ray-induced energy transfer between nanomaterials under X-ray irradiation. Journal of Physical Chemistry C, 120, 3054–3060.

    Article  CAS  Google Scholar 

  37. Schulzendorf, M., Cavelius, C., Born, P., Murray, E., & Kraus, T. (2011). Biphasic synthesis of Au@SiO2 core-shell particles with stepwise ligand exchange. Langmuir, 27, 727–732.

    Article  CAS  PubMed  Google Scholar 

  38. Shankar, C., Dao, A. T. N., Singh, P., Higashimine, K., Mott, D. M., & Maenosono, S. (2012). Chemical stabilization of gold coated by silver core-shell nanoparticles via electron transfer. Nanotechnology, 23, 245704.

    Article  CAS  PubMed  Google Scholar 

  39. Lien, J., Peck, K. A., Su, M. Q., & Guo, T. (2016). Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region. Journal of Colloid and Interface Science, 479, 173–181.

    Article  CAS  PubMed  Google Scholar 

  40. Huang, C. W., Kearney, V., Moeendarbari, S., Jiang, R. Q., Christensen, P., Tekade, R., Sun, X. K., Mao, W. H., & Hao, Y. W. (2015). Hollow gold nanoparticles as biocompatible Radiosensitizer: An in vitro proof of concept study. Journal of Nano Research Sw, 32, 106–U140.

    Article  CAS  Google Scholar 

  41. Huang, C. W., Jiang, J. C., Lu, M. Y., Sun, L., Meletis, E. I., & Hao, Y. W. (2009). Capturing electrochemically evolved Nanobubbles by electroless deposition. A facile route to the synthesis of hollow nanoparticles. Nano Letters, 9, 4297–4301.

    Article  CAS  PubMed  Google Scholar 

  42. Moeendarbari, S., Tekade, R., Mulgaonkar, A., Christensen, P., Ramezani, S., Hassan, G., Jiang, R., Oz, O. K., Hao, Y. W., & Sun, X. K. (2016). Theranostic Nanoseeds for efficacious internal radiation therapy of unresectable solid tumors. Scientific Reports UK, 6, 20614.

    Article  CAS  Google Scholar 

  43. Milosavljevic, B. H., Pimblott, S. M., & Meisel, D. (2004). Yields and migration distances of reducing equivalents in the radiolysis of silica nanoparticles. The Journal of Physical Chemistry. B, 108, 6996–7001.

    Article  CAS  Google Scholar 

  44. Nakayama, M., Sasaki, R., Ogino, C., Tanaka, T., Morita, K., Umetsu, M., Ohara, S., Tan, Z. Q., Nishimura, Y., Akasaka, H., et al. (2016). Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiation Oncology, 11, 91.

    Article  CAS  PubMed  Google Scholar 

  45. Chen, Y. Y., Song, G. S., Dong, Z. L., Yi, X., Chao, Y., Liang, C., Yang, K., Cheng, L., & Liu, Z. (2017). Drug-loaded mesoporous tantalum oxide nanoparticles for enhanced synergetic chemoradiotherapy with reduced systemic toxicity. Small, 13, 1602869.

    Article  CAS  Google Scholar 

  46. Xing, M. M., Cao, W. H., Pang, T., Ling, X. Q., & Chen, N. (2009). Preparation and characterization of monodisperse spherical particles of X-ray nano-phosphors based on Gd2O2S:Tb. Chinese Science Bulletin, 54, 2982–2986.

    Article  CAS  Google Scholar 

  47. Townley, H. E., Kim, J., & Dobson, P. J. (2012). In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles. Nanoscale, 4, 5043–5050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elmenoufy, A. H., Tang, Y. A., Hu, J., Xu, H. B., & Yang, X. L. (2015). A novel deep photodynamic therapy modality combined with CT imaging established via X-ray stimulated silica-modified lanthanide scintillating nanoparticles. Chemical Communications, 51, 12247–12250.

    Article  CAS  PubMed  Google Scholar 

  49. Tang, Y. G., Hu, J., Elmenoufy, A. H., & Yang, X. L. (2015). Highly efficient FRET system capable of deep photodynamic therapy established on X-ray excited mesoporous LaF3:Tb scintillating nanoparticles. ACS Applied Materials & Interfaces, 7, 12261–12269.

    Article  CAS  Google Scholar 

  50. Kamkaew, A., Chen, F., Zhan, Y. H., Majewski, R. L., & Cai, W. B. (2016). Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano, 10, 3918–3935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Algar, W. R., Prasuhn, D. E., Stewart, M. H., Jennings, T. L., Blanco-Canosa, J. B., Dawson, P. E., & Medintz, I. L. (2011). The controlled display of biomolecules on nanoparticles: A challenge suited to bioorthogonal chemistry. Bioconjugate Chemistry, 22, 825–858.

    Article  CAS  PubMed  Google Scholar 

  52. Kang, Z. T., Zhang, Y. L., Menkara, H., Wagner, B. K., Summers, C. J., Lawrence, W., & Nagarkar, V. (2011). CdTe quantum dots and polymer nanocomposites for x-ray scintillation and imaging. Applied Physics Letters, 98, 181914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Delage, M. E., Lecavalier, M. E., Cloutier, E., Lariviere, D., Allen, C. N., & Beaulieu, L. (2016). Robust shell passivation of CdSe colloidal quantum dots to stabilize radioluminescence emission. AIP Advances, 6, 105011.

    Article  CAS  Google Scholar 

  54. Stodilka, R. Z., Carson, J. J. L., Yu, K., Zalman, M. B., Li, C. S., & Wilkinson, D. (2009). Optical degradation of CdSe/ZnS quantum dots upon gamma-ray irradiation. Journal of Physical Chemistry C, 113, 2580–2585.

    Article  CAS  Google Scholar 

  55. Romero, J. J., Llansola-Portoles, M. J., Dell'Arciprete, M. L., Rodriguez, H. B., Moore, A. L., & Gonzalez, M. C. (2013). Photo luminescent 1-2 nm sized silicon nanoparticles: A surface-dependent system. Chemistry of Materials, 25, 3488–3498.

    Article  CAS  Google Scholar 

  56. Gara, P. M. D., Garabano, N. I., Portoles, M. J. L., Moreno, M. S., Dodat, D., Casas, O. R., Gonzalez, M. C., & Kotler, M. L. (2012). ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. Journal of Nanoparticle Research, 14, 741.

    Article  CAS  Google Scholar 

  57. Baldwin, R. K., Pettigrew, K. A., Ratai, E., Augustine, M. P., & Kauzlarich, S. M. (2002). Solution reduction synthesis of surface stabilized silicon nanoparticles. Chemical Communications, 1822–1823.

    Google Scholar 

  58. Ma, N., Li, Y., Xu, H. P., Wang, Z. Q., & Zhang, X. (2010). Dual redox responsive assemblies formed from diselenide block copolymers. Journal of the American Chemical Society, 132, 442.

    Article  CAS  PubMed  Google Scholar 

  59. Kirakci, K., Kubat, P., Fejfarova, K., Martincik, J., Nikl, M., & Lang, K. (2016). X-ray inducible luminescence and singlet oxygen sensitization by an octahedral molybdenum cluster compound: A new class of nanoscintillators. Inorganic Chemistry, 55, 803–809.

    Article  CAS  PubMed  Google Scholar 

  60. Liu, X., Zhang, X., Zhu, M., Lin, G. H., Liu, J., Zhou, Z. F., Tian, X., & Pan, Y. (2017). PEGylated Au@Pt nanodendrites as novel theranostic agents for computed tomography imaging and photothermal/radiation synergistic therapy. ACS Applied Materials & Interfaces, 9, 279–285.

    Article  CAS  Google Scholar 

  61. Qu, Y. Q., Carter, J. D., & Guo, T. (2006). Silica nanocoils. The Journal of Physical Chemistry. B, 110, 8296–8301.

    Article  CAS  PubMed  Google Scholar 

  62. Qu, Y. Q., Carter, J. D., Sutherland, A., & Guo, T. (2006). Surface modification of gold nanotubules via microwave radiation, sonication and chemical etching. Chemical Physics Letters, 432, 195–199.

    Article  CAS  Google Scholar 

  63. Bhattarai, S. R., Derry, P. J., Aziz, K., Singh, P. K., Khoo, A. M., Chadha, A. S., Liopo, A., Zubarev, E. R., & Krishnan, S. (2017). Gold nanotriangles: Scale up and X-ray radiosensitization effects in mice. Nanoscale, 9, 5085–5093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gole, A., & Murphy, C. J. (2004). Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chemistry of Materials, 16, 3633–3640.

    Article  CAS  Google Scholar 

  65. Dewi, M. R., Gschneidtner, T. A., Elmas, S., Ranford, M., Moth-Poulsen, K., & Nann, T. (2015). Monofunctionalization and dimerization of nanoparticles using coordination chemistry. ACS Nano, 9, 1434–1439.

    Article  CAS  PubMed  Google Scholar 

  66. Jain, P. K., & El-Sayed, M. A. (2007). Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells. Nano Letters, 7, 2854–2858.

    Article  CAS  PubMed  Google Scholar 

  67. Al Zaki, A., Joh, D., Cheng, Z. L., De Barros, A. L. B., Kao, G., Dorsey, J., & Tsourkas, A. (2014). Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano, 8, 104–112.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, P. P., Qiao, Y., Xia, J. F., Guan, J. J., Ma, L. Y., & Su, M. (2015). Enhanced radiation therapy with multilayer microdisks containing Radiosensitizing gold nanoparticles. ACS Applied Materials & Interfaces, 7, 4518–4524.

    Article  CAS  Google Scholar 

  69. Fologea, E., Salamo, G., Henry, R., Borrelli, M. J., & Corry, P. M. (2010). Method of controlling drug release from a liposome carrier. US Patent: US8808733B2.

    Google Scholar 

  70. Chen, H. M., Wang, G. D., Chuang, Y. J., Zhen, Z. P., Chen, X. Y., Biddinger, P., Hao, Z. L., Liu, F., Shen, B. Z., Pan, Z. W., et al. (2015). Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Letters, 15, 2249–2256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fan, W. P., Shen, B., Bu, W. B., Zheng, X. P., He, Q. J., Cui, Z. W., Ni, D. L., Zhao, K. L., Zhang, S. J., & Shi, J. L. (2015). Intranuclear biophotonics by smart design of nuclear-targeting photo−/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials, 69, 89–98.

    Article  CAS  PubMed  Google Scholar 

  72. Fan, W. P., Wenbo, B., Bu, Z. Z., Shen, B., Zhang, H., He, Q. J., Ni, D. L., Cui, Z. W., Zhao, K. L., Bu, J. W., et al. (2015). X-ray radiation-controlled NO-release for on-demand depth-independent hypoxic radiosensitization. Angewandte Chemie International Edition, 54, 14026–14030.

    Article  CAS  PubMed  Google Scholar 

  73. Liu, J. J., Chen, Q., Zhu, W. W., Yi, X., Yang, Y., Dong, Z. L., & Liu, Z. (2017). Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles: A multistage redox/pH/H2O2-responsive cancer theranostic nanoplatform. Advanced Functional Materials, 27, 1605926.

    Article  CAS  Google Scholar 

  74. Pan, C. L., Chen, M. H., Tung, F. I., & Liu, T. Y. (2017). A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray. Acta Biomaterialia, 47, 159–169.

    Article  CAS  PubMed  Google Scholar 

  75. Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.

    Article  CAS  PubMed  Google Scholar 

  76. Rotello, V. M., Ghosh, P., Han, G., De, M., & Kim, C. K. (2008). Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60, 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, X. J., Xing, J. Z., Chen, J., Ko, L., Amanie, J., Gulavita, S., Pervez, N., Yee, D., Moore, R., & Roa, W. (2008). Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clinical and Investigative Medicine, 31, E160–E167.

    Article  CAS  PubMed  Google Scholar 

  78. Demers, L. M., Ginger, D. S., Park, S. J., Li, Z., Chung, S. W., & Mirkin, C. A. (2002). Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science, 296, 1836–1838.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, P. P., Qiao, Y., Wang, C. M., Ma, L. Y., & Su, M. (2014). Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles. Nanoscale, 6, 10095–10099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hoyle, C. E., & Bowman, C. N. (2010). Thiol-Ene click chemistry. Angewandte Chemie International Edition, 49, 1540–1573.

    Article  CAS  PubMed  Google Scholar 

  81. Dondoni, A. (2008). The emergence of thiol-Ene coupling as a click process for materials and bioorganic chemistry. Angewandte Chemie International Edition, 47, 8995–8997.

    Article  CAS  PubMed  Google Scholar 

  82. Latimer, C. L. (2013). Octaarginine labelled 30 nm gold nanoparticles as agents for enhanced radiotherapy. In Department of Medical Biophysics, University of Toronto, Toronto, Vol. Master of science, p 81.

    Google Scholar 

  83. Lee, C. Y., Gong, P., Harbers, G. M., Grainger, D. W., Castner, D. G., & Gamble, L. J. (2006). Surface coverage and structure of mixed DNA/alkylthiol monolayers on gold: Characterization by XPS, NEXAFS, and fluorescence intensity measurements. Analytical Chemistry, 78, 3316–3325.

    Article  CAS  PubMed  Google Scholar 

  84. Gu, Y. J., Cheng, J. P., Man, C. W. Y., Wong, W. T., & Cheng, S. H. (2012). Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomedicine Nanotechnology, 8, 204–211.

    Article  CAS  Google Scholar 

  85. Scaffidi, J. P., Gregas, M. K., Lauly, B., Zhang, Y., & Vo-Dinh, T. (2011). Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. ACS Nano, 5, 4679–4687.

    Article  CAS  PubMed  Google Scholar 

  86. Li, Z., Jin, R. C., Mirkin, C. A., & Letsinger, R. L. (2002). Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Research, 30, 1558–1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhu, Z. J., Tang, R., Yeh, Y. C., Miranda, O. R., Rotello, V. M., & Vachet, R. W. (2012). Determination of the intracellular stability of gold nanoparticle monolayers using mass spectrometry. Analytical Chemistry, 84, 4321–4326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Davidson, R. A., & Guo, T. (2015). Multiplication algorithm for combined physical and chemical enhancement of X-ray effect by nanomaterials. Journal of Physical Chemistry C, 119, 19513–19519.

    Article  CAS  Google Scholar 

  89. Kudgus, R. A., Szabolcs, A., Khan, J. A., Walden, C. A., Reid, J. M., Robertson, J. D., Bhattacharya, R., & Mukherjee, P. (2013). Inhibiting the growth of pancreatic adenocarcinoma in vitro and in vivo through targeted treatment with designer gold nanotherapeutics. PLoS One, 8, e57522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Withers, N .J., Plumley, J. B., Triño, N. D., Sankar, K., Akins, B. A., Rivera, A. C., Smolyakov, G. A., Timmins, G. S., & Osiński, M. (2009). Scintillating-nanoparticle-induced enhancement of absorbed radiation dose. Proc. of SPIE, 7189, 718917

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, T. (2018). Nanomaterials for X-Ray Nanochemistry. In: X-ray Nanochemistry. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-78004-7_6

Download citation

Publish with us

Policies and ethics