Skip to main content

Chemical Enhancement

  • Chapter
  • First Online:
X-ray Nanochemistry

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Chemical enhancement is formally introduced in this chapter. A brief introduction is given to discuss a few leads to the existence of chemical enhancement. Two type of chemical enhancement are described, both of which depends on catalysis. The reactions that support type 1 chemical enhancement are discussed. The role of scavengers on at least type 1 chemical enhancement is explained. Evidence for type 2 chemical enhancement is given and discussed. Other possible types of chemical enhancement are also briefly discussed.

Getting a degree and being educated are totally two different things—the first is a transaction and the second a transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.

    Article  CAS  PubMed  Google Scholar 

  2. McMahon, S. J., Hyland, W. B., Brun, E., Butterworth, K. T., Coulter, J. A., Douki, T., Hirst, D. G., Jain, S., Kavanagh, A. P., Krpetic, Z., Mendenhall, M. H., Muir, M. F., Prise, K. M., Requardt, H., Sanche, L., Schettino, G., Currell, F. J., & Sicard-Roselli, C. (2011). Energy dependence of gold nanoparticle radiosensitization in plasmid DNA. Journal of Physical Chemistry C, 115, 20160–20167.

    Article  CAS  Google Scholar 

  3. Misawa, M., & Takahashi, J. (2011). Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomedicine: Nanotechnology, 7, 604–614.

    Article  CAS  Google Scholar 

  4. Cheng, N. N., Starkewolf, Z., Davidson, A. R., Sharmah, A., Lee, C., Lien, J., & Guo, T. (1950). Chemical enhancement by nanomaterials under X-ray irradiation. Journal of the American Chemical Society, 2012(134), 1950–1953.

    Google Scholar 

  5. Makrigiorgos, G. M., Baranowskakortylewicz, J., Bump, E., Sahu, S. K., Berman, R. M., & Kassis, A. I. (1993). A method for detection of hydroxyl radicals in the vicinity of biomolecules using radiation-induced fluorescence of coumarin. International Journal of Radiation Biology, 63, 445–458.

    Article  CAS  PubMed  Google Scholar 

  6. Louit, G., Foley, S., Cabillic, J., Coffigny, H., Taran, F., Valleix, A., Renault, J. P., & Pin, S. (2005). The reaction of coumarin with the OH radical revisited: Hydroxylation product analysis determined by fluorescence and chromatography. Radiation Physics and Chemistry, 72, 119–124.

    Article  CAS  Google Scholar 

  7. Sicard-Roselli, C., Brun, E., Gilles, M., Baldacchino, G., Kelsey, C., McQuaid, H., Polin, C., Wardlow, N., & Currell, F. (2014). A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions. Small, 10, 3338–3346.

    Article  CAS  PubMed  Google Scholar 

  8. Gilles, M., Brun, E., & Sicard-Roselli, C. (2014). Gold nanoparticles functionalization notably decreases radiosensitization through hydroxyl radical production under ionizing radiation. Colloids and Surfaces B: Biointerfaces, 123, 770–777.

    Article  CAS  PubMed  Google Scholar 

  9. Davidson, R. A., & Guo, T. (2012). An example of X-ray nanochemistry: SERS investigation of polymerization enhanced by nanostructures under X-ray irradiation. Journal of Physical Chemistry Letters, 3, 3271–3275.

    Article  CAS  Google Scholar 

  10. Alqathami, M., Blencowe, A., Yeo, U. J., Doran, S. J., Qiao, G., & Geso, M. (2012). Novel multicompartment 3-dimensional radiochromic radiation dosimeters for nanoparticle-enhanced radiation therapy dosimetry. International Journal of Radiation Oncology Biology Physics, 84, E549–E555.

    Article  Google Scholar 

  11. Guidelli, E. J., Ramos, A. P., Zaniquelli, M. E. D., Nicolucci, P., & Baffa, O. (2012). Synthesis and characterization of gold/alanine nanocomposites with potential properties for medical application as radiation sensors. ACS Applied Materials & Interfaces, 4, 5844–5851.

    Article  CAS  Google Scholar 

  12. Guidelli, E. J., & Baffa, O. (2014). Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach. Medical Physics, 41(032101), 1–8.

    Google Scholar 

  13. Paudel, N., Shvydka, D., & Parsai, E. I. (2015). Comparative study of experimental enhancement in free radical generation against Monte Carlo modeled enhancement in radiation dose position due to the presence of high Z materials during irradiation of aqueous media. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 4, 300–307. 300.

    Article  Google Scholar 

  14. Esumi, K., Takei, N., & Yoshimura, T. (2003). Antioxidant-potentiality of gold-chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces, 32, 117–123.

    Article  CAS  Google Scholar 

  15. Nie, Z., Liu, K. J., Zhong, C. J., Wang, L. F., Yang, Y., Tian, Q., & Liu, Y. (2007). Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: A novel inspiration for development of new artificial antioxidants. Free Radical Biology & Medicine, 43, 1243–1254.

    Article  CAS  Google Scholar 

  16. Chang, J., Taylor, R. D., Davidson, R. A., Sharmah, A., & Guo, T. (2016). Electron paramagnetic resonance spectroscopy investigation of radical production by gold nanoparticles in aqueous solutions under X-ray irradiation. Journal of Physical Chemistry A, 120, 2815–2823.

    Article  CAS  Google Scholar 

  17. Sharmah, A., Mukherjee, S., Yao, Z., Lu, L., & Guo, T. (2016). Concentration-dependent association between weakly attractive nanoparticles in aqueous solutions. Journal of Physical Chemistry C, 120, 19830–19836.

    Article  CAS  Google Scholar 

  18. You, H. J., Yang, S. C., Ding, B. J., & Yang, H. (2013). Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chemical Society Reviews, 42, 2880–2904.

    Article  CAS  PubMed  Google Scholar 

  19. Bond, G. C., Louis, C., & Thompson, D. T. (2006). Catalysis by gold, G. J. Hutchings (p. 366). Catalytic Science Series, Vol. 6. London: Imperial College Press.

    Google Scholar 

  20. Ionita, P., Gilbert, B. C., & Chechik, V. (2005). Radical mechanism of a place-exchange reaction of an nanoparticles. Angewandte Chemie, International Edition, 44, 3720–3722.

    Article  CAS  Google Scholar 

  21. Zhang, Z. F., Cui, H., Lai, C. Z., & Liu, L. J. (2005). Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Analytical Chemistry, 77, 3324–3329.

    Article  CAS  PubMed  Google Scholar 

  22. Duan, C. F., Cui, H., Zhang, Z. F., Liu, B., Guo, J. Z., & Wang, W. (2007). Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence. Journal of Physical Chemistry C, 111, 4561–4566.

    Article  CAS  Google Scholar 

  23. Lambert, R. M., Turner, M., Golovko, V. B., Vaughan, O. P. H., Abdulkin, P., Berenguer-Murcia, A., Tikhov, M. S., & Johnson, B. F. G. (2008). Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature, 454, 981–U931.

    Article  CAS  PubMed  Google Scholar 

  24. Ito, S., Miyoshi, N., Degraff, W. G., Nagashima, K., Kirschenbaum, L. J., & Riesz, P. (2009). Enhancement of 5-Aminolevulinic acid-induced oxidative stress on two cancer cell lines by gold nanoparticles. Free Radical Research, 43, 1214–1224.

    Article  CAS  PubMed  Google Scholar 

  25. Cao, R., Cao, R., Villalonga, R., Diaz-Garcia, A. M., Rojo, T., & Rodriguez-Arguelles, M. C. (2011). Gold nanoparticles enhancing dismutation of superoxide radical by its bis(dithiocarbamato) copper(II) shell. Inorganic Chemistry, 50, 4705–4712.

    Article  CAS  PubMed  Google Scholar 

  26. He, W. W., Zhou, Y. T., Warner, W. G., Hu, X. N., Wu, X. C., Zheng, Z., Boudreau, M. D., & Yin, J. J. (2013). Intrinsic catalytic activity of au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials, 34, 765–773.

    Article  CAS  PubMed  Google Scholar 

  27. Wen, T., He, W. W., Chong, Y., Liu, Y., Yin, J. J., & Wu, X. C. (2015). Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: Implications for biomedical applications. Physical Chemistry Chemical Physics, 17, 24937–24943.

    Article  CAS  PubMed  Google Scholar 

  28. Gara, P. M. D., Garabano, N. I., Portoles, M. J. L., Moreno, M. S., Dodat, D., Casas, O. R., Gonzalez, M. C., & Kotler, M. L. (2012). ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. Journal of Nanoparticle Research, 14, 741.

    Article  CAS  Google Scholar 

  29. Seo, S. J., Han, S. M., Cho, J. H., Hyodo, K., Zaboronok, A., You, H., Peach, K., Hill, M. A., & Kim, J. K. (2015). Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core-inner-shell excitation by proton or monochromatic X-ray irradiation: Implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. Radiation and Environmental Biophysics, 54, 423–431.

    Article  CAS  PubMed  Google Scholar 

  30. Cadet, J., & Wagner, J. R. (2016). Radiation-induced damage to cellular DNA: Chemical nature and mechanisms of lesion formation. Radiation Physics and Chemistry, 128, 54–59.

    Article  CAS  Google Scholar 

  31. Burrows, C. J., & Muller, J. G. (1998). Oxidative nucleobase modifications leading to strand scission. Chemical Reviews, 98, 1109–1151.

    Article  CAS  PubMed  Google Scholar 

  32. Nishimura, S., Anh, T. N. D., Mott, D., Ebitani, K., & Maenosono, S. (2012). X-ray absorption near-edge structure and X-ray photoelectron spectroscopy studies of interfacial charge transfer in gold-silver-gold double-shell nanoparticles. Journal of Physical Chemistry C, 116, 4511–4516.

    Article  CAS  Google Scholar 

  33. Ionita, P., Spafiu, F., & Ghica, C. (2008). Dual behavior of gold nanoparticles, as generators and scavengers for free radicals. Journal of Materials Science, 43, 6571–6574.

    Article  CAS  Google Scholar 

  34. Zhang, Z. Y., Berg, A., Levanon, H., Fessenden, R. W., & Meisel, D. (2003). On the interactions of free radicals with gold nanoparticles. Journal of the American Chemical Society, 125, 7959–7963.

    Article  CAS  PubMed  Google Scholar 

  35. Hamasaki, T., Kashiwagi, T., Imada, T., Nakamichi, N., Aramaki, S., Toh, K., Morisawa, S., Shimakoshi, H., Hisaeda, Y., & Shirahata, S. (2008). Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir, 24, 7354–7364.

    Article  CAS  PubMed  Google Scholar 

  36. Watanabe, A., Kajita, M., Kim, J., Kanayama, A., Takahashi, K., Mashino, T., & Miyamoto, Y. (2009). In vitro free radical scavenging activity of platinum nanoparticles. Nanotechnology, 20, 455105.

    Article  CAS  PubMed  Google Scholar 

  37. Sahbani, S. K., Cloutier, P., Bass, A. D., Hunting, D. J., & Sanche, L. (2015). Electron resonance decay into a biological function: Decrease in viability of E-coli transformed by plasmid DNA irradiated with 0.5-18 eV electrons. Journal of Physical Chemistry Letters, 6, 3911–3914.

    Article  CAS  Google Scholar 

  38. Radiation damage: A new understanding. In Current research on molecular processing. http://www.isa.au.dk/networks/eipam/radam-research.html

  39. Davidson, R. A., & Guo, T. (2015). Multiplication algorithm for combined physical and chemical enhancement of X-ray effect by nanomaterials. Journal of Physical Chemistry, 119, 19513–19519.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, T. (2018). Chemical Enhancement. In: X-ray Nanochemistry. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-78004-7_3

Download citation

Publish with us

Policies and ethics