Skip to main content

Abstract

Radio-frequency (rf) power is important to a wide range of applications, including radio transmitters, plasma generation, medical imagers (e.g., MRI), power converters, and wireless power transfer (WPT) among myriad other applications. Advances in power semiconductor devices, magnetics, and circuit design are opening the door to much more efficient generation and delivery of power at radio frequencies. This chapter presents an overview of switched-mode power amplifiers – or radio-frequency inverters – encompassing their design, control, and construction. We focus on the high-frequency (HF, 3–30 MHz) and very-high-frequency (VHF, 30–300 MHz) ranges. We explore key aspects of rf power conversion, including power circuit architecture and design, selection and efficient drive of power devices at rf, and control methods for modulating power and managing load variations. We also address circuit construction, including the design and application of passive components at radio frequencies. Magnetics for power applications at HF and VHF pose a special challenge when compactness and high efficiency are desired. We explore the design of air-core and magnetic-core magnetics for this frequency range, including winding design, core material evaluation and selection, and application of magnetic cores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Absolute delays of gate-drive signals is itself not an issue, unless one seeks to actively adjust switch timing under feedback control.

  2. 2.

    The split-winding transformer “push-pull” version of the Class D eliminates the level-shifting challenge, but transformer leakage makes this variant undesirable at high frequencies.

  3. 3.

    It is possible to build a switched-mode system whose output responds to variations in rf input amplitude [32], but such systems use controls to indirectly mimic that characteristic of linear power amplifers.

References

  1. B. Molnar, Basic limitations on waveforms achievable in single-ended switching-mode tuned (Class E) power amplifiers. IEEE J. Solid-State Circuits 19(1), 144–146 (1984)

    Google Scholar 

  2. E.L. Owen, History [origin of the inverter]. IEEE Ind. Appl. Mag. 2(1), 64–66 (1996)

    Google Scholar 

  3. D. Prince, The inverter. Gen. Elect. Rev. 28, 676–681 (1925)

    Google Scholar 

  4. I. T. U. (ITU), Radio regulations articles. Booklet (2016). ISM bands outlined in Article 5.150

    Google Scholar 

  5. D.C. Hamill, Impedance plane analysis of Class DE amplifier. Electron. Lett. 30(23), 1905–1906 (1994)

    Google Scholar 

  6. S.-A. El-Hamamsy, Design of high-efficiency RF Class-D power amplifier. IEEE Trans. Power Electron. 9(3), 297–308 (1994)

    Google Scholar 

  7. N. Sokal, A. Sokal, Class E—a new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J. Solid-State Circuits SC-10(3), 168–176 (1975)

    Google Scholar 

  8. M.K. Kazimierczuk, D. Czarkowski, Resonant power converters (Wiley, New York, 2012)

    Google Scholar 

  9. M. Kazimierczuk, K. Puczko, Exact analysis of Class-E tuned power amplifier at any Q and switch duty cycle. IEEE Trans. Circuits Syst. 34, 149–159 (1987)

    Google Scholar 

  10. N.O. Sokal, Class-E RF power amplifiers. American Radio Relay League (ARRL), QEX, pp. 9–20, Jan/Feb 2001

    Google Scholar 

  11. J.M. Rivas, R.S. Wahby, J.S. Shafran, D.J. Perreault, New architectures for radio-frequency dc-dc power conversion. IEEE Trans. Power Electron. 21(2), 380–393 (2006)

    Google Scholar 

  12. J.M. Rivas, D. Jackson, O. Leitermann, A.D. Sagneri, Y. Han, D.J. Perreault, Design considerations for very high frequency dc-dc converters, in 37th IEEE Power Electronics Specialists Conference, 2006, pp. 18–22

    Google Scholar 

  13. R.C. Pilawa-Podgurski, A.D. Sagneri, J.M. Rivas, D.I. Anderson, D.J. Perreault, Very-high-frequency resonant boost converters. IEEE Trans. Power Electron. 24(6), 1654–1665 (2009)

    Google Scholar 

  14. L. Roslaniec, A.S. Jurkov, A.A. Bastami, D.J. Perreault, Design of single-switch inverters for variable resistance/load modulation operation. IEEE Trans. Power Electron. 30, 3200–3214 (2015)

    Google Scholar 

  15. S.D. Kee, I. Aoki, A. Hajimiri, D. Rutledge, The Class-E/F family of ZVS switching amplifiers. IEEE Trans. Microwave Theory Tech. 51, 1677–1690 (2003)

    Google Scholar 

  16. J.M. Rivas, Y. Han, O. Leitermann, A. Sagneri, D.J. Perreault, A high-frequency resonant inverter topology with low voltage stress, in IEEE Power Electronics Specialists Conference (PESC) (IEEE, 2007), pp. 2705–2717

    Google Scholar 

  17. R.L. Steigerwald, Lossless gate driver circuit for a high frequency converter, U.S. Patent 5,010,261, 23 Apr 1991

    Google Scholar 

  18. D. Maksimovic, A MOS gate drive with resonant transitions, in IEEE 22nd Annual Power Electronics Specialists Conference (PESC ’91 Record), June 1991, pp. 527–532

    Google Scholar 

  19. P. Dwane, D.O. Sullivan, M.G. Egan, An assessment of resonant gate drive techniques for use in modern low power dc-dc converters, in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), vol. 3, Mar 2005, pp. 1572–1580

    Google Scholar 

  20. L. Gu, W. Liang, J. Rivas-Davila, A multi-resonant gate driver for very-high-frequency (VHF) resonant converters, in IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), July 2017, pp. 1–7

    Google Scholar 

  21. F. Hattori, H. Umegami, M. Yamamoto, Multi-resonant gate drive circuit of isolating-gate GaN HEMTs for tens of MHz. IET Circuits, Devices Syst. 11(3), 261–266 (2017)

    Google Scholar 

  22. H. Kobayashi, J.M. Hinrichs, P.M. Asbeck, Current-mode Class-D power amplifiers for high-efficiency rf applications. IEEE Trans. Microwave Theory Tech. 49, 2480–2485 (2001)

    Google Scholar 

  23. F. Raab, Idealized operation of the Class E tuned power amplifier. IEEE Trans. Circuits Syst. 24, 725–735 (1977)

    Google Scholar 

  24. Z. Kaczmarczyk, W. Jurczak, A Push-Pull Class-E inverter with improved efficiency. IEEE Trans. Ind. Electron. 55, 1871–1874 (2008)

    Google Scholar 

  25. J.S. Glaser, J.M. Rivas, A 500 W push-pull dc-dc power converter with a 30 MHz switching frequency, in 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Feb 2010, pp. 654–661

    Google Scholar 

  26. I. Aoki, S.D. Kee, D.B. Rutledge, A. Hajimiri, Distributed active transformer: a new power-combining and impedance-transformation technique. IEEE Trans. Microwave Theory Tech. 50, 316–331 (2002)

    Google Scholar 

  27. S. Jeon, D.B. Rutledge, A 2.7-kW, 29-MHz Class-E/F odd amplifier with a distributed active transformer, in IEEE MTT-S International Microwave Symposium Digest, June 2005, p. 4

    Google Scholar 

  28. K. Shinoda, T. Suetsugu, M. Matsuo, S. Mori, Idealized operation of Class DE amplifier and frequency multipliers. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 45, 34–40 (1998)

    Google Scholar 

  29. R. Zulinski, J. Steadman, Idealized operation of Class E frequency multipliers. IEEE Trans. Circuits Syst. 33, 1209–1218 (1986)

    Google Scholar 

  30. W. Inam, K.K. Afridi, D.J. Perreault, Variable frequency multiplier technique for high-efficiency conversion over a wide operating range. IEEE J. Emerging Sel. Top. Power Electron. 4, 335–343 (2016)

    Google Scholar 

  31. D.J. Perreault, A new architecture for high-frequency variable-load inverters, in 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), June 2016, pp. 1–8

    Google Scholar 

  32. T.W. Barton, D.J. Perreault, Theory and implementation of rf-input outphasing power amplification. IEEE Trans. Microwave Theory Tech. 63, 4273–4283 (2015)

    Google Scholar 

  33. T. Barton, Not just a phase: outphasing power amplifiers. IEEE Microwave Mag. 17, 18–31 (2016)

    Google Scholar 

  34. H. Chireix, High power outphasing modulation. Proc. Inst. Radio Eng. 23, 1370–1392 (1935)

    Google Scholar 

  35. P.A. Godoy, D.J. Perreault, J.L. Dawson, Outphasing energy recovery amplifier with resistance compression for improved efficiency. IEEE Trans. Microwave Theory Tech. 57, 2895–2906 (2009)

    Google Scholar 

  36. D.J. Perreault, A new power combining and outphasing modulation system for high-efficiency power amplification. IEEE Trans. Circuits Syst. I: Regul. Pap. 58, 1713–1726 (2011)

    Google Scholar 

  37. T.W. Barton, D.J. Perreault, Four-way microstrip-based power combining for microwave outphasing power amplifiers. IEEE Trans. Circuits Syst. I: Regul. Pap. 61, 2987–2998 (2014)

    Google Scholar 

  38. A.S. Jurkov, L. Roslaniec, D.J. Perreault, Lossless multi-way power combining and outphasing for high-frequency resonant inverters, in Proceedings of The 7th International Power Electronics and Motion Control Conference, vol. 2, June 2012, pp. 910–917

    Google Scholar 

  39. T.W. Barton, A.S. Jurkov, P.H. Pednekar, D.J. Perreault, Multi-way lossless outphasing system based on an all-transmission-line combiner. IEEE Trans. Microwave Theory Tech. 64, 1313–1326 (2016)

    Google Scholar 

  40. L.R. Kahn, Single-sideband transmission by envelope elimination and restoration. Proc. IRE 40, 803–806 (1952)

    Google Scholar 

  41. J.J. Yan, C. Hsia, D.F. Kimball, P.M. Asbeck, Design of a 4-W envelope tracking power amplifier with more than one octave carrier bandwidth. IEEE J. Solid-State Circuits 47, 2298–2308 (2012)

    Google Scholar 

  42. T.M. Aitto-oja, High efficiency envelope tracking supply voltage modulator for high power base station amplifier applications, in IEEE MTT-S International Microwave Symposium, May 2010, pp. 1–1

    Google Scholar 

  43. M. Rodríguez, Y. Zhang, D. Maksimović, High-frequency PWM buck converters using GaN-on-SiC HEMTs. IEEE Trans. Power Electron. 29, 2462–2473 (2014)

    Google Scholar 

  44. M. Vasic, O. Garcia, J.A. Oliver, P. Alou, D. Diaz, J.A. Cobos, Multilevel power supply for high-efficiency rf amplifiers. IEEE Trans. Power Electron. 25, 1078–1089 (2010)

    Google Scholar 

  45. V. Yousefzadeh, E. Alarcon, D. Maksimovic, Three-level buck converter for envelope tracking applications. IEEE Trans. Power Electron. 21, 549–552 (2006)

    Google Scholar 

  46. P.A. Godoy, S. Chung, T.W. Barton, D.J. Perreault, J.L. Dawson, A 2.4-GHz, 27-dBm asymmetric multilevel outphasing power amplifier in 65-nm CMOS. IEEE J. Solid-State Circuits 47, 2372–2384 (2012)

    Google Scholar 

  47. P.A. Godoy, S. Chung, T.W. Barton, D.J. Perreault, J.L. Dawson, A highly efficient 1.95-GHz, 18-W asymmetric multilevel outphasing transmitter for wideband applications, in 2011 IEEE MTT-S International Microwave Symposium, June 2011, pp. 1–1

    Google Scholar 

  48. S. Chung, P.A. Godoy, T.W. Barton, D.J. Perreault, J.L. Dawson, Asymmetric multilevel outphasing transmitter using Class-E PAs with discrete pulse width modulation, in 2010 IEEE MTT-S International Microwave Symposium, May 2010, pp. 264–267

    Google Scholar 

  49. H.M. Nemati, C. Fager, U. Gustavsson, R. Jos, H. Zirath, Design of varactor-based tunable matching networks for dynamic load modulation of high power amplifiers. IEEE Trans. Microwave Theory Tech. 57, 1110–1118 (2009)

    Google Scholar 

  50. K. Eisele, R. Engelbrecht, K. Kurokawa, Balanced transistor amplifiers for precise wideband microwave applications, in 1965 IEEE International Solid-State Circuits Conference on Digest of Technical Papers, vol. VIII, Feb 1965, pp. 18–19

    Google Scholar 

  51. A.S. Jurkov, A. Radomski, D.J. Perreault, Tunable impedance matching networks based on phase-switched impedance modulation, in 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Oct 2017, pp. 947–954

    Google Scholar 

  52. A.A. Bastami, A. Jurkov, P. Gould, M. Hsing, M. Schmidt, J.I. Ha, D.J. Perreault, Dynamic matching system for radio-frequency plasma generation. IEEE Trans. Power Electron. 33, 1940–1951 (2018)

    Google Scholar 

  53. Y. Han, O. Leitermann, D.A. Jackson, J.M. Rivas, D.J. Perreault, Resistance compression networks for radio-frequency power conversion. IEEE Trans. Power Electron. 22, 41–53 (2007)

    Google Scholar 

  54. T.W. Barton, J.M. Gordonson, D.J. Perreault, Transmission line resistance compression networks and applications to wireless power transfer. IEEE J. Emerging Sel. Top. Power Electron. 3, 252–260 (2015)

    Google Scholar 

  55. C. Sullivan, R. Zhang, Analytical model for effects of twisting on Litz-Wire losses, in IEEE Workshop on Control and Modeling for Power Electronics (COMPEL), June 2014

    Google Scholar 

  56. B.A. Reese, C.R. Sullivan, Litz wire in the MHz range: Modeling and improved designs, in IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), 2017, pp. 1–8

    Google Scholar 

  57. S. Hinaga, M. Koledintseva, P. Anmula, J. Drewniak, Effect of conductor surface roughness upon measured loss and extracted values of PCB laminate material dissipation factor, in Proceedings of the Technical Conference on IPC Expo/APEX, 2009, pp. S20–S22

    Google Scholar 

  58. C.R. Sullivan, D. Harburg, J. Qiu, C.G. Levey, D. Yao, Integrating magnetics for on-chip power: a perspective. IEEE Trans. Power Electron. 28(9), 4342–4353 (2013)

    Google Scholar 

  59. W. Liang, L. Raymond, J. Rivas, 3-D-printed air-core inductors for high-frequency power converters. IEEE Trans. Power Electron. 31(1), 52–64 (2016)

    Google Scholar 

  60. C.R. Sullivan, W. Li, S. Prabhakaran, S. Lu, Design and fabrication of low-loss toroidal air-core inductors, in IEEE Power Electronics Specialists Conference (PESC) (IEEE, 2007), pp. 1754–1759

    Google Scholar 

  61. G. Zulauf, W. Liang, J. Rivas-Davila, A unified model for high-power, air-core toroidal PCB inductors, in IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL) (IEEE, 2017), pp. 1–8

    Google Scholar 

  62. S. Orlandi, B.A. Allongue, G. Blanchot, S. Buso, F. Faccio, C.A. Fuentes, M. Kayal, S. Michelis, G. Spiazzi, Optimization of shielded PCB air-core toroids for high-efficiency dc-dc converters. IEEE Trans. Power Electron. 26(7), 1837–1846 (2011)

    Google Scholar 

  63. S. Ramo, J. Whinnery, T.V. Duzer, Fields and Waves in Communication Electronics, 3rd edn. (Wiley, New York, 1994)

    Google Scholar 

  64. J. Qiu, D.V. Harburg, C.R. Sullivan, A toroidal power inductor using radial-anisotropy thin-film magnetic material based on a hybrid fabrication process, in IEEE Applied Power Electronics Conference and Exposition, Mar 2013

    Google Scholar 

  65. J. Qiu, A.J. Hanson, C.R. Sullivan, Design of toroidal inductors with multiple parallel foil windings, in IEEE Workshop on Control and Modeling for Power Electronics (COMPEL) (IEEE, 2013), pp. 1–6

    Google Scholar 

  66. T. Simpson, Effect of a conducting shield on the inductance of an aircore solenoid. IEEE Trans. Magn. 35, 508—515 (1999)

    Google Scholar 

  67. R. Medhurst, HF resistance and self-capacitance of single-layer solenoids. Wirel. Eng. Part 1, 24(2), pp. 35–43, Part 2 24(3), pp. 80–92, Feb/mar (1947)

    Google Scholar 

  68. R. Medhurst, Q of solenoid coils. Wirel. Eng. 24(9), p. 281 Sept. (1947)

    Google Scholar 

  69. M. Callendar, Q of solenoid coils. Wirel. Eng. (Correspondence) 24(6), p. 185 (1946)

    Google Scholar 

  70. T. Lee, Planar Microwave Engineering, chap. 6 (Cambridge University Press, Cambridge 2004)

    Google Scholar 

  71. S.L. C.S. A.J. Hanson, J.A. Belk and D. Perreault, Measurements and performance factor comparisons of magnetic materials at high frequency. IEEE Trans. Power Electron. 31(11), 7909–7925 (2016)

    Google Scholar 

  72. Y. Han, G. Cheung, A. Li, C.R. Sullivan, D.J. Perreault, Evaluation of magnetic materials for very high frequency applications. IEEE Trans. Power Electron. 27(1), 425–435 (2008)

    Google Scholar 

  73. Soft Ferrites and Accessories Data Handbook, Ferroxcube International Holding B.V. Poland 2013

    Google Scholar 

  74. D.J. Perreault, J. Hu, J.M. Rivas, Y. Han, O. Leitermann, R.C. Pilawa-Podgurski, A. Sagneri, C.R. Sullivan, Opportunities and challenges in very high frequency power conversion, in Twenty-Fourth Annual Applied Power Electronics Conference and Exposition (APEC) (IEEE, 2009), pp. 1–14

    Google Scholar 

  75. C.P. Steinmetz, On the law of hysteresis (reprint of article from 1892). Proc. IEEE 72, 197–221 (1984)

    Google Scholar 

  76. J. Hu, C.R. Sullivan, AC resistance of planar power inductors and the quasi-distributed gap technique. IEEE Trans. Power Electron. 16(4), 558–567 (2001)

    Google Scholar 

  77. R. Yang, A. Hanson, D. Perreault, C. Sullivan, A low-loss inductor structure and design guidelines for high-frequency applications, in IEEE Applied Power Electronics Conference, Feb 2018

    Google Scholar 

  78. C.R. Sullivan, Layered foil as an alternative to Litz Wire: multiple methods for equal current sharing among layers, in IEEE 19th Workshop on Control and Modeling for Power Electronics, 2014

    Google Scholar 

  79. A.L.F. Stein, P.A. Kyaw, C.R. Sullivan, High-Q self-resonant structure for wireless power transfer, in IEEE Applied Power Electronics Conference and Exposition (APEC), Mar 2017, pp. 3723–3729

    Google Scholar 

  80. P.A. Kyaw, A.L.F. Stein, C.R. Sullivan, High-Q resonator with integrated capacitance for resonant power conversion, in IEEE Applied Power Electronics Conference and Exposition (APEC), Mar 2017, pp. 2519–2526

    Google Scholar 

  81. P.A. Kyaw, A.L.F. Stein, C.R. Sullivan, Fundamental examination of multiple potential passive component technologies for future power electronics. IEEE Trans. Power Electron. (2017). http://dx.doi.org/10.1109/TPEL.2017.2776609

    Google Scholar 

  82. C. Trask, Transmission line transformers: theory design and applications. Part 1, in High Frequency Electronics, 2005, pp. 46–53

    Google Scholar 

  83. C. Trask, Transmission line transformers: Theory design and applications. Part 2, in High Frequency Electronics, 2006, pp. 26–32

    Google Scholar 

  84. R. Mack, J. Sevick, Sevick’s Transmission Line Transformers: Theory and Practice, 5th edn. Scitech Publishing imprint of the IET (IET, 2014)

    Google Scholar 

  85. Y. Han, D.J. Perreault, Analysis and design of high efficiency matching networks. IEEE Trans. Power Electron. 21(5), 1484–1491 (2006)

    Article  Google Scholar 

  86. P.A. Kyaw, A.L. Stein, C.R. Sullivan, Analysis of high efficiency multistage matching networks with volume constraint, in IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL) (IEEE, 2017), pp. 1–8

    Google Scholar 

  87. A. Kumar, S. Sinha, A. Sepahvand, K.K. Afridi, Improved design optimization approach for high efficiency matching networks, in 2016 IEEE Energy Conversion Congress and Exposition (ECCE) (IEEE, 2016), pp. 1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Perreault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perreault, D.J., Sullivan, C.R., Rivas, J.M. (2018). GaN in Switched-Mode Power Amplifiers. In: Meneghesso, G., Meneghini, M., Zanoni, E. (eds) Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion. Integrated Circuits and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-77994-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77994-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77993-5

  • Online ISBN: 978-3-319-77994-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics