Skip to main content

Origin of Diamond-Bearing Impactites

  • Chapter
  • First Online:
Popigai Impact Structure and its Diamond-Bearing Rocks

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract

The Popigai impact event due to its huge capacity affected the environment causing significant damage of the Earth’s surface within a radius of many hundreds and thousands of kilometers. Data obtained from a detailed study of the geological structure of the impact site made it possible to clarify the concepts of some impact mechanisms of displacing masses of rocks and formation of concentric uplift and subsidence within the structure. They also made it possible to evaluate the parameters of the shock event and the physical-chemical and spatial parameters of the formation of the impact melt and conditions of graphite to diamond transformation. The petrological model of the origin of diamond-bearing impactites for several reconstructed stages of melt and rock formation has been considered within the framework of the actual cratering process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bazilevsky AT, Ivanov BA, Florensky KP, Yakovlev OI, Feldman VL, Granovsky LB (1983) Impact craters on the Moon and planets (in Russian). Nauka Press, Moscow, 200 pp

    Google Scholar 

  • Collins GS, Melosh HJ, Marcus RA (2005) Earth impact effects program: a Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit Planet Sci 40:817–840

    Article  Google Scholar 

  • Feldman VI (1990) Petrology of impactites (in Russian). Moscow University Press, Moscow, 299 p

    Google Scholar 

  • Floran RJ, Grieve RAF, Phinney WC, Warner JL, Rhodes MJ, Jahn BM, Dence MR (1978) Manicouagan impact melt, Quebec, I: stratigraphy, petrology, and chemistry. J Geophys Res 83(B6):2737–2759

    Article  Google Scholar 

  • Gault DE, Wedekind JA (1978) Experimental studies of oblique impact. In: Proceedings of Lunar Planet Sci Conf IX, pp 3843–3876

    Google Scholar 

  • Gault DE, Quaide WL, Oberbeck VR (1968) Impact cratering mechanics and structures. In: Short NM, French BM (eds) Shock metamorphism of natural materials. Mono Book, Baltimore, pp 87–99

    Google Scholar 

  • Gohn GS, Koeberl K, Miller KG, Reimold WU (2009) Deep drilling in the Chesapeake Bay impact structure—an overview. Geol Soc Am Spec Pap 458:1–20

    Google Scholar 

  • Grakhanov SA (2005) New data on distribution of lonsdaleite-bearing diamonds in the northeastern of Siberian platform. Trans (Dokl) Russ Acad Sci 405:779–782

    Google Scholar 

  • Grakhanov SA, Shatalov VI, Shtyrov VA, Kychkin VR, Suleimanov AM (2007) Diamond placers of Russia (in Russian). Geo Press, Novosibirsk, 457 pp

    Google Scholar 

  • Grieve RAF (1975) Petrology and chemistry of the impact melt of Mistastin Lake crater, Labrador. Geol Soc Am Bull 86:1617–1629

    Article  Google Scholar 

  • Grieve RAF (1978) Meteoritic component and impact melt composition of the Clearwater impact structures, Quebec. Geochim Cosmochim Acta 42:420–431

    Article  Google Scholar 

  • Hess PC (1971) Polymeric model of silicate melts. Geochim Cosmochim Acta 35:289–306

    Article  Google Scholar 

  • Ivanov BA (2005) Impacts of cosmic bodies as a geological factor (in Russian). In: Adushkin VV, Nemchinov IV (eds) Catastrophic influence of cosmic bodies. Academkniga Press, Moscow, pp 118–150

    Google Scholar 

  • Kenkmann T, Poelschau MH, Wulf G (2014) Structural geology of impact craters. J Struct Geol 62:156–182

    Article  Google Scholar 

  • Koeberl C, Masaitis VL, Shafranovsky GI, Gilmour I, Langenhorst F, Schrauder M (1997) Diamonds from the Popigai impact structure, Russia. Geology 25:967–970

    Article  Google Scholar 

  • Krasheninnikov VA, Ahmetjev MA (eds) (1996) Geological and biological events in Late Eocene–Early Oligocene (in Russian). GEOS Publishing, Moscow, part 1, 313 pp, part 2, 249 pp

    Google Scholar 

  • Masaitis VL (1978) High-temperature metamorphism and melting in impact craters. In: Problems of petrology of Earth crust and upper mantle (in Russian): Nauka Press, Novosibirsk, pp 188–194

    Google Scholar 

  • Masaitis VL (1982) Problems of shock metamorphism (in Russian). VSEGEI Trans, New Ser 238:113–122

    Google Scholar 

  • Masaitis VL (1984) Giant meteorite impact: some models and their consequences. In: Modern ideas of theoretical geology (in Russian). Nedra Press, Leningrad, pp 151–179

    Google Scholar 

  • Masaitis VL (1993) Diamantiferous impactites, their distribution and petrogenesis (in Russian). Regionalnaya Geologija and Metallogenija 1:121–134

    Google Scholar 

  • Masaitis VL (1998) Popigai crater: origin and distribution of diamond-bearing impactites. Meteorit Planet Sci 33:349–359

    Article  Google Scholar 

  • Masaitis VL (2010) Prospective zones of damage caused by the Popigai impact event. In: Finkelstein A, Huebner W, Shor V (eds) Protecting the Earth against collisions with asteroids and comet nuclei. SPb, Nauka. Proceedings of the International Conference “Asteroid-Comet Hazard-2009”, pp 211–215

    Google Scholar 

  • Masaitis VL, Mashchak MS (1982) Bilateral symmetry of ring impact structures (in Russian). Meteoritika 41:150–156

    Google Scholar 

  • Melosh HJ (1989) Impact cratering—a geological process. Oxford University Press, New York, 245 pp

    Google Scholar 

  • Melosh HJ (2013) The contact and compression stage of impact cratering. In: Osinski GR, Pierazzo E (eds) Impact cratering: processes and products. Wiley, Chichester, pp 32–42

    Google Scholar 

  • Morgan JV, Warner MR, Collins GS, Melosh HJ, Christeson GL (2000) Peak ring formation in large impact craters. Earth Planet Sci Lett 183:347–354

    Article  Google Scholar 

  • Morgan JV, Gulick SPS, Bralower T, Chenot E, Christeson G, Claeys P, Cockell C, Collins GS, Coolen MJL, Ferrière L, Gebhardt C, Goto K, Jones H, Kring DA, Le Ber E, Lofi J, Long X, Lowery C, Mellett C, Ocampo-Torres R, Osinski GR, Perez-Cruz L, Pickersgill A, Poelchau M, Rae A, Rasmussen C, Rebolledo-Vieyra M, Riller U, Sato H, Schmitt DR, Smit J, Tikoo S, Tomioka N, Urrutia-Fucugauchi J, Whalen M, Wittmann A, Yamaguchi KE, Zylberman W (2016) The formation of peak rings in large impact craters. Science 35(6314):878–882

    Article  Google Scholar 

  • Onorato PJK, Uhlmann DR, Simonds CH (1978) The thermal history of the Manicouagan impact melt sheet, Quebec. J Geophys Res 83(B6):2789–2798

    Article  Google Scholar 

  • Parfenova OV, Yakovlev OI, Kosolapov AI (1976) Some regularities of evaporization of target substance during meteorite impact (in Russian). Vestnik of Moscow State University, ser Geol 3:52–66

    Google Scholar 

  • Pilkington M, Pesonen LJ, Grieve RAF, Masaitis VL (2002) Geophysics and petrophysics of the Popigai impact structure, Siberia. In: Plado J, Pesonen LJ (eds) Impacts in Precambrian shields. Springer, Berlin, pp 87–108

    Chapter  Google Scholar 

  • Poag CW (1996) Structural outer rim of Cheasapeake Bay impact crater: seismic and borehole evidence. Meteorit Planet Sci 31:218–226

    Article  Google Scholar 

  • Poag CW, Aubry MP (1995) Upper Eocene impactites of the US east coast: depositional origins biostratigraphic framework and correlation. Palaios 10:16–43

    Article  Google Scholar 

  • Poag CW, Koeberl C, Reimold WU (2004) The Chesapeake crater—geology and geophysics of a late Eocene submarine impact structure. Impact Studies Series. Springer, Heidelberg, 522 pp

    Google Scholar 

  • Selivanovskaya TV (1987) Crystal fractionation of impact melts (in Russian). Meteoritika 46:128–135

    Google Scholar 

  • Sherlock SC, Kelley SP, Parnell J, Green P, Lee P, Osinski GR, Cockell CS (2005) Re-evaluating the age of the Haughton impact event. Meteorit Planet Sci 40(12):1777–1788

    Article  Google Scholar 

  • Simonds CH, Floran RJ, McGee PE, Phinney WC, Warner JL (1978) Petrogenesis of melt rocks, Manicouagan impact structure, Quebec. J Geophys Res 83(B6):2773–2788

    Article  Google Scholar 

  • Val’ter AA, Dobryansky YP (2001) Cooling regimes in tagamite sheets and their influence on impact diamonds preservation (in Russian). Mineral J 23(4):56–66

    Google Scholar 

  • Val’ter AA, Yeremenko AA, Kvasnitza VN, Polkanov YA (1992) Shock-generated carbon minerals (in Russian). Naukova Dumka Press, Kiev, 171 pp

    Google Scholar 

  • Vermeesch PM, Morgan JV (2004) Chicxulub central crater structure: initial results from physical property measurements and combined velocity and gravity modeling. Meteorit Planet Sci 39:1019–1034

    Article  Google Scholar 

  • Vishnevsky SA, Afanasiev VP, Argunov KP, Pal’chik NA (1997) Impact diamonds: their features, origin & significance (in Russian). Siberian Branch of Russian Academy of Scence Press, Novosibirsk, 110 pp

    Google Scholar 

  • Warren PH, Clayes P, Cedillo-Pardo E (1996) Megaimpact melt petrology (Chicxulub Sudbury and the Moon): effects of scale and other factors on potential for fractional crystallization and developments of cumulates. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous-Tertiary event and other catastrophes in Earth history. Geological Society of America Special Paper 307, pp 105–124

    Google Scholar 

  • Yakovlev OI, Parfenova OB, Arkhangelskaya VN (1978) Modification of rock composition during impact melt formation (in Russian). Trans (Dokl) Acad Sci USSR 240:934–937

    Google Scholar 

  • Zel’dovich YB, Raizer YI (1966) The physics of shock waves and of high-temperature hydrodynamic phenomena (in Russian). Nauka Press, Moscow, 686 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor L. Masaitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masaitis, V.L. (2019). Origin of Diamond-Bearing Impactites. In: Masaitis, V. (eds) Popigai Impact Structure and its Diamond-Bearing Rocks. Impact Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-77988-1_8

Download citation

Publish with us

Policies and ethics