Advertisement

Supplementation of Vitamins, Minerals, Enzymes and Antioxidants in Fish Feeds

  • Laura Gasco
  • Francesco Gai
  • Giulia Maricchiolo
  • Lucrezia Genovese
  • Sergio Ragonese
  • Teresa Bottari
  • Gabriella Caruso
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

The fast increase in marine aquaculture productions has generated some problems related to optimization of fish feed. Moreover, the search for alternative raw materials to supplement or replace fishmeal and fish oil has made the introduction of additives into the diet necessary. Diet additives have recently attracted attention and investments of the aquaculture industry and, consequently, researches aimed at evaluating the costs/benefits ratio and the effects on organisms and environments are increasing. In general, additives are nutritive or nonnutritive ingredients that are added to the diet alone or in combination with each other and that are present in small quantities. Their functions are different: preserve the physical and chemical features of the diet, enhance animal health and welfare, improve the quality of final product and maintain the quality of aquatic environment. This chapter provides an overview of the use of vitamins, minerals and antioxidants in fish feeds. In addition to these natural substances, also enzymes are proposed as new alternative aquafeed additives. The effects on fish growth, welfare, reproduction and health status of the above-reported additives are discussed.

Keywords

Antioxidants Aquaculture Enzymes Fish feed Metabolism Minerals Vitamins 

References

  1. Abraham TJ, Babu CHS, Mondal S, Banerjee T (2007) Effects of dietary supplementation of commercial human probiotic and antibiotic on the growth rate and content of intestinal microflora in ornamental fishes. Bangladesh J Fish Res 11(1):57–63Google Scholar
  2. Akhtar MS, Pal AK, Sahu NP, Ciji A, Meena DK (2012) Effects of dietary pyridoxine on growth and physiological responses of Labeo rohita fingerlings reared in high water temperature. Isr J Aquacult Bamidgeh 64(777):1–6Google Scholar
  3. Ai Q, Mai K, Tan B, Xu W, Zhang W, Ma H, Liufu Z (2006) Effects of dietary vitamin C on survival, growth, and immunity of large yellow croaker, Pseudosciaena crocea. Aquaculture 261(1):327–336.  https://doi.org/10.1016/j.aquaculture.2006.07.027 CrossRefGoogle Scholar
  4. Al-Dohail MA, Hashim R, Aliyu-Paiko M (2009) Effects of the probiotic, Lactobacillus acidophilus, on the growth performance, haematology parameters and immunoglobulin concentration in African Catfish (Clarias gariepinus, Burchell 1822) fingerling. Aquacult Res 40(14):1642–1652.  https://doi.org/10.1111/j.1365-2109.2009.02265.x CrossRefGoogle Scholar
  5. Amar EC, Kiron V, Satoh S, Okamoto N, Watanabe T (2000) Effects of dietary b-carotene on the immune response of rainbow trout Oncorhynchus mykiss. Fish Sci 66(6):1068–1075.  https://doi.org/10.1046/j.1444-2906.2000.00170.x CrossRefGoogle Scholar
  6. Amar EC, Kiron V, Satoh S, Watanabe T (2001) Influence of various dietary synthetic carotenoids on bio-defence mechanisms in rainbow trout, Oncorhyncus mykiss (Walbaum). Aquacult Res 32(s1):162–173.  https://doi.org/10.1046/j.1355-557x.2001.00051.x CrossRefGoogle Scholar
  7. Amar EC, Kiron V, Satoh S, Watanabe T (2004) Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish Shellfish Immunol 16(4):527–537.  https://doi.org/10.1016/j.fsi.2003.09.004 CrossRefGoogle Scholar
  8. Andersen F, Lygren B, Maage A, Waagbø R (1998) Interaction between two dietary levels of iron and two forms of ascorbic acid and the effect on growth, antioxidant status and some non-specific immune parameters in Atlantic salmon (Salmo salar) smolts. Aquaculture 161(1–4):435–449.  https://doi.org/10.1016/s0044-8486(97)00291-3 Google Scholar
  9. Austin B, Stuckey L, Robertson P, Effendi I, Griffith D (1995) A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. J Fish Dis 18(1):93–96.  https://doi.org/10.1111/j.1365-2761.1995.tb01271.x CrossRefGoogle Scholar
  10. Bagni A, Romano N, Fionia MG, Abelli L, Scapigliati G, Tiscar PG, Sarti M, Marino G (2005) Short- and long-term effect of dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax). Fish Shellfish Immunol 18(4):311–325.  https://doi.org/10.1016/j.fsi.2004.08.003 CrossRefGoogle Scholar
  11. Bairagi A, Sarkar Ghosh K, Sen SK, Ray AK (2002) Enzyme producing bacterial flora isolated from fish digestive tracts. Aquacult Int 10(2):109–121.  https://doi.org/10.1023/a:1021355406412 CrossRefGoogle Scholar
  12. Balcázar JL (2002) Use of probiotics in aquaculture: general aspects. Memorias del Primer Congreso Iberoamericano virtual de acuicultura. Zaragoza, Spain, pp 877–881Google Scholar
  13. Balcázar JL, de Blas I, Ruiz-Zarzuela I, Vendrell D, Muzquiz JL (2004) Probiotics: a tool for the future of fish and shellfish health management. J Aquacult Trop 19:239–242Google Scholar
  14. Balcázar JL, de Blas I, Ruiz-Zazuela I, Vandrell D, Girones O, Muzquiz JL (2007) Enhancement of the immune response and protection induced by probiotic lactic acid bacteria against furunculosis in rainbow trout (Oncorhynchus mykiss). FEMS Immunol Med Microbiol 51(1):185–193.  https://doi.org/10.1111/j.1574-695x.2007.00294.x CrossRefGoogle Scholar
  15. Bell GR, Higgs DA, Traxler GS (1984) The effect of dietary ascorbate, zinc and manganese on the development of experimentally induced bacterial kidney disease in sockeye salmon (Oncorhynchus nerka). Aquaculture 36(4):293–311.  https://doi.org/10.1016/0044-8486(84)90323-5 CrossRefGoogle Scholar
  16. Blazer VS (1992) Nutrition and disease resistance in fish. Ann Rev Fish Dis 2:309–323.  https://doi.org/10.1016/0959-8030(92)90068-9 CrossRefGoogle Scholar
  17. Blazer VS, Wolke RE (1984) The effects of alpha-tocopherol on the immune response and nonspecific resistance factors of rainbow trout (Salmo gairdneri Richardson). Aquaculture 37(1):1–9.  https://doi.org/10.1016/0044-8486(84)90039-5 CrossRefGoogle Scholar
  18. Brunt J, Austin B (2005) Use of a probiotic to control lactococcosis and streptococcosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 28(12):693–701.  https://doi.org/10.1111/j.1365-2761.2005.00672.x CrossRefGoogle Scholar
  19. Brunt J, Newaj-Fyzul A, Austin B (2007) The development of probiotics for the control of multiple bacterial diseases of rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 30(10):573–579.  https://doi.org/10.1111/j.1365-2761.2007.00836.x CrossRefGoogle Scholar
  20. Caruso G, Genovese L (1995) Preliminary data on lysozyme in sea bass (Dicentrachus labrax) juvenile fed diets containing varying levels of vitamin C. Animal Biol 4:161–163Google Scholar
  21. Castillo S, Gatlin DM III (2015) Dietary supplementation of exogenous carbohydrase enzymes in fish nutrition: a review. Aquaculture 435:286–292.  https://doi.org/10.1016/j.aquaculture.2014.10.011 CrossRefGoogle Scholar
  22. Cerezuela R, Cuesta A, Meseguer J, Esteban MA (2009) Effects of dietary vitamin D3 administration on innate immune parameters of seabream (Sparus aurata L.). Fish Shellfish Immunol 26(2):243–248.  https://doi.org/10.1016/j.fsi.2008.11.004 CrossRefGoogle Scholar
  23. Chang CI, Liu WY (2002) An evaluation of two probiotic bacterial strains, Enterococcus faecium SF68 and Bacillus toyoi, for reducing edwardsiellosis in cultured European eel, Anguilla anguilla L. J Fish Dis 25(5):311–315.  https://doi.org/10.1046/j.1365-2761.2002.00365.x CrossRefGoogle Scholar
  24. Choi SH, Yoon TJ (2008) Non-specific immune response of rainbow trout (Oncorhynchus mykiss) by dietary heat-inactivated potential probiotics. Immune Netw 8(3):67–74.  https://doi.org/10.4110/in.2008.8.3.67 CrossRefGoogle Scholar
  25. Christiansen R, Glette J, Lie Ø, Torrissen OJ, Waagbø R (1995) Antioxidant status and immunity in Atlantic salmon, Salmo salar L., fed semi-purified diets with and without astaxanthin supplementation. J Fish Dis 18(4):317–328.  https://doi.org/10.1111/j.1365-2761.1995.tb00308.x CrossRefGoogle Scholar
  26. Cuesta A, Esteban MA, Meseguer J (2002) Natural cytotoxic activity in seabream (Sparus aurata L.) and its modulation by vitamin C. Fish Shellfish Immunol 13(2):97–109.  https://doi.org/10.1006/fsim.2001.0384 CrossRefGoogle Scholar
  27. Cuesta A, Esteban MA, Ortuño J, Meseguer J (2001) Vitamin E increases natural cytotoxic activity in seabream (Sparus aurata L.). Fish Shellfish Immunol 11(4):293–302.  https://doi.org/10.1006/fsim.2000.0316 CrossRefGoogle Scholar
  28. Darias MJ, Mazurais D, Koumoundouros G, Cahu CL, Zambonino-Infante JL (2011) Overview of vitamin D and C requirements in fish and their influence on the skeletal system. Aquaculture 315(1–2):49–60.  https://doi.org/10.1016/j.aquaculture.2010.12.030 CrossRefGoogle Scholar
  29. Darias MJ, Mazurais D, Koumoundouros G, Glynatsi N, Christodoulopoulou S, Huelvan C, Desbruyeres E, Le Gall MM, Quazuguel P, Cahu CL, Zambonino-Infante JL (2010) Dietary vitamin D3 affects digestive system ontogenesis and ossification in European sea bass (Dicentrachus labrax, Linnaeus, 1758). Aquaculture 298(3–4):300–307.  https://doi.org/10.1016/j.aquaculture.2009.11.002 CrossRefGoogle Scholar
  30. De Silva SS, Anderson TA (1995) Fish nutrition in aquaculture. Chapman & Hall Ltd, London, pp 1–319Google Scholar
  31. Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C, Güroy D, Davies SJ (2011) Microbial manipulations to improve fish health and production: a Mediterranean perspective. Fish Shellfish Immunol 30(1):1–16.  https://doi.org/10.1016/j.fsi.2010.08.009 CrossRefGoogle Scholar
  32. Durve VS, Lovell RT (1982) Vitamin C and disease resistance in channel catfish (Ictaluruspunctatus). Can J Fish Aquat Sci 39(7):948–951.  https://doi.org/10.1139/f82-129 CrossRefGoogle Scholar
  33. El-Mowafi A, Waagbø R, Maage A (1997) Effect of low dietary magnesium on immune response and osmoregulation of Atlantic salmon. J Aquat Animal Health 9(1):8–17.  https://doi.org/10.1577/1548-8667(1997)009<0008:eoldmo>2.3.co;2 CrossRefGoogle Scholar
  34. Eya JC, Lovell RT (1998) Effects of Dietary Phosphorus on Resistance of channel catfish to Edwardsiella ictaluri challenge. J Aquat Animal Health 10(1):28–34.  https://doi.org/10.1577/1548-8667(1998)010<0028:eodpor>2.0.co;2 CrossRefGoogle Scholar
  35. FAO (1987a) Chapter 5. Essential nutrients-vitamins. In: The nutrition and feeding of farmed fish and shrimp; a training manual. 1: the essential nutrients. GCP/RLA/075/ITA, FAO/UNDP. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/docrep/field/003/ab470e/AB470E05.htm. Accessed 03 Jan 2018
  36. FAO (1987b) Chapter 6. Essential nutrients-minerals. In: The nutrition and feeding of farmed fish and shrimp; a training manual. 1: the essential nutrients. GCP/RLA/075/ITA, FAO/UNDP. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/docrep/field/003/ab470e/AB470E06.htm. Accessed 03 Jan 2018
  37. Feng L, He W, Jiang J, Liu Y, Zhou XQ (2010) Effects of dietary pyridoxine on disease resistance, immune responses and intestinal microflora in juvenile Jian carp (Cyprinus carpio var. Jian). AquacultNutr 16(3):254–261.  https://doi.org/10.1111/j.1365-2095.2009.00660.x
  38. Feng L, Huang HH, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Zhou XQ (2011) Effect of dietary thiamin supplement on immune responses and intestinal microflora in juvenile Jian carp (Cyprinus carpio var. Jian). AquacultNutr 17(5):557–569.  https://doi.org/10.1111/j.1365-2095.2011.00851.x
  39. Fernández I, Gisbert E (2011) The effect of vitamin A on flatfish development and skeletogenesis: a review. Aquaculture 315(1–2):34–48.  https://doi.org/10.1016/j.aquaculture.2010.11.025 CrossRefGoogle Scholar
  40. Gaixa DE (1889) U¨ ber das verhalten einiger pathogener mikroorganismen in meerwasser. Z Hyg Infektionskr 6(1):162–224.  https://doi.org/10.1007/bf02188153 Google Scholar
  41. Garriques D, Arevalo G (1995) An evaluation of the production and use of a live bacterial isolate to manipulate the microbial flora in the commercial production of Penaeus vannamei postlarvae in Ecuador. In: Swimming through troubled water. Proceedings of the Special Session on Shrimp Farming, Aquaculture’95. World Aquacult Soc, Baton Rouge, pp 53–59Google Scholar
  42. Gatta PP, Thompson KD, Smullen R, Piva A, Testi S, Adams A (2001) Dietary organic chromium supplementation and its effect on the immune response of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 11(5):371–382.  https://doi.org/10.1006/fsim.2000.0323 CrossRefGoogle Scholar
  43. Ghosh K, Sen SK, Ray AK (2002) Characterization of Bacilli isolated from gut of rohu, Labeo rohita, fingerlings and its significance in digestion. J Appl Aquacult 12(3):33–42.  https://doi.org/10.1300/j028v12n03_04 CrossRefGoogle Scholar
  44. Girones R, Jofre JT, Bosch A (1989) Isolation of marine bacteria with antiviral properties. Can J Microbiol 35(11):1015–1021.  https://doi.org/10.1139/m89-169 CrossRefGoogle Scholar
  45. Gismondo MR, Drago L, Lombardi A (1999) Review of probiotics available to modify gastrointestinal flora. Int J Antimicrob Agents 12(4):287–292.  https://doi.org/10.1016/s0924-8579(99)00050-3 CrossRefGoogle Scholar
  46. Gomez-Gil B, Roque A, Turnbull JF (2000) The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191(1–3):259–270.  https://doi.org/10.1016/s0044-8486(00)00431-2 CrossRefGoogle Scholar
  47. González-Riopedre M, Márquez L, Sieiro MP, Vázquez U, Maroto J, Barcia R, Moyano FJ (2013) Use of purified extracts from fish viscera as an enzyme additive in feeds for juvenile marine fish. In: Sieiro-Pineiro MP, Vazquez Ferreiro U, Estévez Calvar N, Maroto-Leal J (eds) New additives and ingredients in the formulation of aquafeeds. Centro Tecnologico del Mar- Fundacion (CETMAR)Google Scholar
  48. Graff IE, Høie S, Totland GK, Lie Ø (2002) Three different levels of dietary vitamin D3 fed to first-feeding fry of Atlantic salmon (Salmo salar L.): effect on growth, mortality, calcium content and bone formation. AquacultNutr 8(2):103–111.  https://doi.org/10.1046/j.1365-2095.2002.00197.x
  49. Guillaume J, Kaushik S, Bergot P, Métailler R (eds) (1999) Nutrition et Alimentation des Poissons et Crustacés. INRA Editions, Paris, pp 1–485Google Scholar
  50. Halver JE (1989) The vitamins. In: Halver JE (ed) Fish nutrition, 2nd edn. Academic Press, New York and LondonGoogle Scholar
  51. Halver JE (2002) The minerals. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, LondonGoogle Scholar
  52. Hamre K, Waagbø R, Berge RK, Lie Ø (1997) Vitamin C and E interact in juvenile Atlantic salmon (Salmo salar L.). Free Radic Biol Med 22(1–2):137–149.  https://doi.org/10.1016/s0891-5849(96)00281-x
  53. Hardie LJ, Fletcher TC, Secombes CJ (1990) The effect of vitamin E on the immune response of the Atlantic salmon (Salmo salar L.). Aquaculture 87(1):1–13.  https://doi.org/10.1016/0044-8486(90)90206-3
  54. Hardie LJ, Fletcher TC, Secombes CJ (1991) The effect of dietary vitamin C on the immune response of the Atlantic salmon (Salmo salar L.). Aquaculture 95(3–4):201–214.  https://doi.org/10.1016/0044-8486(91)90087-n
  55. Hardy RW, Halver JE, Brannon EL (1979) Effect of dietary protein level on the pyridoxine requirement and disease resistance of Chinook salmon. In: Halver JE, Tiews K (eds) Finfish nutrition and fish feed technology, vol 1. Heeneman GmbH, Berlin, pp 253–260Google Scholar
  56. Henrique MMF, Gomes EF, Gouillou-Coustans MF, Oliva-Teles A, Davies SJ (1998) Influence of supplementation of practical diets with vitamin C on growth and response to hypoxic stress of seabream, Sparus aurata. Aquaculture 161(1–4):415–426.  https://doi.org/10.1016/s0044-8486(97)00289-5 CrossRefGoogle Scholar
  57. Hernandez LH, Teshima S, Koshio S, Ishikawa M, Tanaka Y, Shah AM (2007) Effects of vitamin A on growth, serum anti-bacterial activity and transaminase activities in the juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture 262(2–4):444–450.  https://doi.org/10.1016/j.aquaculture.2006.10.012 CrossRefGoogle Scholar
  58. Hilton JW (1989) The interaction of vitamins, minerals and diet composition in the diet of fish. Aquaculture 79(1–4):223–244.  https://doi.org/10.1016/0044-8486(89)90463-8 CrossRefGoogle Scholar
  59. Hixson SM (2014) Fish Nutrition and Current Issues in Aquaculture: The Balance in Providing Safe and Nutritious Seafood, in an Environmentally Sustainable Manner. J Aquacult Res Dev 5:234.  https://doi.org/10.4172/2155-9546.1000234 Google Scholar
  60. Inoue M, Satoh S, Maita M, Kiron V, Okamoto N (1998) Recovery from derangement of natural killer-like activity of leucocytes due to Zn or Mn deficiency in rainbow trout, Oncorhynchus mykiss (Walbaum), by the oral administration of these elements. J Fish Dis 21(3):233–236.  https://doi.org/10.1111/j.1365-2761.1998.00080.x CrossRefGoogle Scholar
  61. Irianto A, Austin B (2002) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25(6):333–342.  https://doi.org/10.1046/j.1365-2761.2002.00375.x CrossRefGoogle Scholar
  62. Izquierdo M, Betancor M (2015) Chapter 8-Vitamin E. In: Lee CS, Lim C, Gatlin DM III, Webster CD (eds) Dietary nutrients, additives and fish health, 1st edn. Wiley, HobokenGoogle Scholar
  63. Ji H, Om AD, Yoshimatsu T, Umino T, Nakagawa H, Sakamoto S (2010) Effect of dietary ascorbate on lipogenesis and lipolysis activities in black sea bream, Acanthopagrus schlegelii. Fish Physiol Biochem 36(3):749–755.  https://doi.org/10.1007/s10695-009-9349-z CrossRefGoogle Scholar
  64. Jiang WD, Feng L, Liu Y, Jiang J, Hu K, Li SH, Zhou XQ (2010) Effects of graded levels of dietary myo-inositol on non-specific immune and specific immune parameters in juvenile Jian carp (Cyprinus carpio var. Jian). Aquacult Nutr 41(10):1413–1420.  https://doi.org/10.1111/j.1365-2109.2009.02430.x Google Scholar
  65. Jokinen EI, Vielma J, Aaltonen TM, Koskela J (2003) The effect of dietary phosphorus deficiency on the immune responses of European whitefish (Coregonus lavaretus L.). Fish Shellfish Immunol 15(2):159–168.  https://doi.org/10.1016/s1050-4648(02)00155-9 CrossRefGoogle Scholar
  66. Kamei Y, Yoshimizu M, Ezura Y, Kimura T (1988) Screening of bacteria with antiviral activity from fresh water salmonid hatcheries. Microbiol Immunol 32(1):67–73.  https://doi.org/10.1111/j.1348-0421.1988.tb01366.x CrossRefGoogle Scholar
  67. Kar N, Roy RN, Sen SK, Ghosh K (2008) Isolation and characterization of extracellular enzyme producing Bacilli in the digestive tracts of rohu, Labeo rohita (Hamilton) and murrel, Channa punctatus (Bloch). Asian Fish Sci 21:421–434Google Scholar
  68. Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274(1):1–14.  https://doi.org/10.1016/j.aquaculture.2007.11.019 CrossRefGoogle Scholar
  69. Kim DH, Austin B (2006) Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish Immunol 21(5):513–524.  https://doi.org/10.1016/j.fsi.2006.02.007 CrossRefGoogle Scholar
  70. Kiron V (2012) Fish immune system and its nutritional modulation for preventive health care. Animal Feed Sci Technol 173(1–2):111–133.  https://doi.org/10.1016/j.anifeedsci.2011.12.015 CrossRefGoogle Scholar
  71. Lall SP (2000) Nutrition and health of fish. In: Proceedings of ‘Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola’, Mérida, 19–22 Nov 2000Google Scholar
  72. Landolt ML (1989) The relationship between diet and the immune response of fish. Aquaculture 79(1–4):193–206.  https://doi.org/10.1016/0044-8486(89)90461-4 CrossRefGoogle Scholar
  73. Lategan MJ, Gibson LF (2003) Antagonistic activity of Aeromonas media strain A199 against Saprolegnia sp., an opportunistic pathogen of the eel, Anguilla australis Richardson. J Fish Dis 26(3):147–153.  https://doi.org/10.1046/j.1365-2761.2003.00443.x CrossRefGoogle Scholar
  74. Lemos D, Tacon AGJ (2016) Use of phytases in fish and shrimp feeds: a review. Rev Aquacult 9(3):266–282.  https://doi.org/10.1111/raq.12138 CrossRefGoogle Scholar
  75. Li Y, Lovell RT (1985) Elevated levels of dietary ascorbic acid increase immune responses in channel catfish. J Nutr 115:123–131CrossRefGoogle Scholar
  76. Li MH, Robinson EH (1999) Dietary ascorbic acid requirement for growth and health in fish. J Appl Aquacult 9(2):53–80.  https://doi.org/10.1300/j028v09n02_04 CrossRefGoogle Scholar
  77. Li MH, Wise DJ, Robinson EH (1998) Effect of dietary vitamin C on weight gain, tissue ascorbate concentration, stress response, and disease resistance of channel catfish Ictalurus punctatus. J World AquacultSoc 29(1):1–8.  https://doi.org/10.1111/j.1749-7345.1998.tb00293.x CrossRefGoogle Scholar
  78. Lim C, Klesius PH (1997) Responses of channel catfish (Ictaluris punctatus) fed iron-deficient and replete diets to Edwardsiella ictaluri challenge. Aquaculture 157(1–2):83–93.  https://doi.org/10.1016/s0044-8486(97)00143-9 CrossRefGoogle Scholar
  79. Lim C, Klesius PH (2003) Influence of dietary levels of magnesium on growth, tissue mineral content, and resistance of channel catfish Ictalurus punctatus challenged with Edwardsiella ictaluri. J World AquacultSoc 34(1):18–28.  https://doi.org/10.1111/j.1749-7345.2003.tb00035.x CrossRefGoogle Scholar
  80. Lim C, Klesius PH, Li MH, Robinson EH (2000) Interaction between dietary levels of iron and vitamin C on growth, hematology, immune response and resistance of channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri challenge. Aquaculture 185(3–4):313–327.  https://doi.org/10.1016/s0044-8486(99)00352-x CrossRefGoogle Scholar
  81. Lim C, Yildirim-Aksoy M, Li MH, Welker TL, Klesius PH (2009) Influence of dietary levels of lipid and vitamin E on growth and resistance of Nile tilapia to Streptococcus iniae challenge. Aquaculture 298(1–2):76–82.  https://doi.org/10.1016/j.aquaculture.2009.09.025 CrossRefGoogle Scholar
  82. Lin YH, Lin HY, Shiau SY (2011) Dietary folic acid requirement of grouper, Epinephelus malabaricus, and its effects on non-specific immune responses. Aquaculture 317(1–4):133–137.  https://doi.org/10.1016/j.aquaculture.2011.04.010 CrossRefGoogle Scholar
  83. Lin YH, Shiau SY (2005) Dietary vitamin E requirements of grouper, Epinephelus malabaricus, at two lipid levels, and their effects on immune responses. Aquaculture 248(1–4):235–244.  https://doi.org/10.1016/j.aquaculture.2005.04.020 CrossRefGoogle Scholar
  84. Liu PR, Plumb JA, Guerin M, Lovell RT (1989) Effect of megalevels of dietary vitamin C on the immune response of channel catfish Ictalurus punctatus in ponds. Dis Aquat Org 7:191–194.  https://doi.org/10.3354/dao007191 CrossRefGoogle Scholar
  85. Lock EJ, Waagbø R, Wendelaar Bonga S, Flik G (2010) The significance of vitamin D for fish: a review. AquacultNutr 16(1):100–116.  https://doi.org/10.1111/j.1365-2095.2009.00722.x Google Scholar
  86. Lundebye AK, Hove H, Måge A, Bohne VJB, Hamre K (2010) Levels of synthetic antioxidants (ethoxyquin, butylated hydroxytoluene and butylated hydroxyanisole) in fish feed and commercially farmed fish. Food Addit Contam Part A 27(12):1652–1657.  https://doi.org/10.1080/19440049.2010.508195 CrossRefGoogle Scholar
  87. Magnadottir B (2010) Immunological control of fish diseases. Mar Biotechnol 12(4):361–379.  https://doi.org/10.1007/s10126-010-9279-x CrossRefGoogle Scholar
  88. Martinez-Cruz M, Ibanez AL, Monroy-Hermosyllo OA, Ramirez Saad HC (2012) Use of probiotics in aquaculture. ISRN Microbiol 2012:916845.  https://doi.org/10.5402/2012/916845 CrossRefGoogle Scholar
  89. Mohapatra S, Chakraborty T, Kumar V, Deboeck G, Mohanta KN (2013) Aquaculture and stress management: a review of probiotic intervention. J Animal Physiol Animal Nutr (Berl) 97(3):405–430.  https://doi.org/10.1111/j.1439-0396.2012.01301.x CrossRefGoogle Scholar
  90. Montero D, Marrero M, Izquierdo MS, Robaina L, Vergara JM, Tort L (1999) Effect of vitamin E and C dietary supplementation on some immune parameters of gilthead seabream Sparus aurata juveniles subjected to crowding stress. Aquaculture 171(3–4):269–278.  https://doi.org/10.1016/s0044-8486(98)00387-1 CrossRefGoogle Scholar
  91. Montero D, Tort L, Izquierdo MS, Robaina L, Vergara JM (1998) Depletion of serum alternative complement pathway activity in gilthead seabream caused by alpha-tocopherol and n-3 HUFA dietary deficiencies. Fish Physiol Biochem 18(4):399–407.  https://doi.org/10.1023/a:1007734720630 CrossRefGoogle Scholar
  92. Montero D, Tort L, Robaina L, Vergara JM, Izquierdo MS (2001) Low vitamin E in diet reduces stress resistance of gilthead seabream (Sparus aurata) juveniles. Fish Shellfish Immunol 11(6):473–490.  https://doi.org/10.1006/fsim.2000.0324 CrossRefGoogle Scholar
  93. Moriarty DJW (1997) The role of microorganisms in aquaculture ponds. Aquaculture 151(1–4):333–349.  https://doi.org/10.1016/s0044-8486(96)01487-1 CrossRefGoogle Scholar
  94. Mulero V, Esteban MA, Meseguer J (1998) Effects of in vitro addition of exogenous vitamins C and E on gilthead seabream (Sparus aurata L.) phagocytes. Vet Immunol Immunopathol 66(2):185–199.  https://doi.org/10.1016/s0165-2427(98)00185-8 CrossRefGoogle Scholar
  95. Navarre O, Halver JE (1989) Disease resistance and humoral antibody production in rainbow trout fed high levels of vitamin C. Aquaculture 79(1–4):207–221.  https://doi.org/10.1016/0044-8486(89)90462-6 CrossRefGoogle Scholar
  96. Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29(1):2–14.  https://doi.org/10.1016/j.fsi.2010.02.017 CrossRefGoogle Scholar
  97. Nayak SK, Swain P, Mukherjee SC (2007) Effect of dietary supplementation of probiotic and vitamin C on the immune response of Indian major carp, Labeo rohita (Ham). Fish Shellfish Immunol 23(4):892–896.  https://doi.org/10.1016/j.fsi.2007.02.008 CrossRefGoogle Scholar
  98. Nikoskelainen S, Ouwehand A, Bylund G, Salminen S, Lilius EM (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol 15(5):443–452.  https://doi.org/10.1016/s1050-4648(03)00023-8 CrossRefGoogle Scholar
  99. Nikoskelainen S, Salminen S, Bylund G, Ouwehand A (2001) Characterization of the properties of human and dairy-derived probiotics for prevention of infectious diseases in fish. Appl Environ Microbiol 67(6):2430–2435.  https://doi.org/10.1128/aem.67.6.2430-2435.2001 CrossRefGoogle Scholar
  100. Niu H, Jia Y, Hu P, Meng Z, Lei J (2014) Effect of dietary vitamin E on the growth performance and nonspecific immunity in sub-adult turbot (Scophthalmus maximus). Fish Shellfish Immunol 41(2):501–506.  https://doi.org/10.1016/j.fsi.2014.09.033 CrossRefGoogle Scholar
  101. NRC (1983) Nutrient requirements of warmwater fishes and shellfishes. The National research Council (NRC). National Academy Press, Washington, DC, pp 1–102Google Scholar
  102. NRC (1993) Nutrient requirements of fish. The National research Council (NRC). National Academy Press, Washington, DCGoogle Scholar
  103. NRC (2011) Nutritional requirements of fish and shrimp. The National research Council (NRC). National Academy Press, Washington, DCGoogle Scholar
  104. Obach A, Ouentel C, Laurencin FB (1993) Effects of alpha-tocopherol and dietary oxidized fish oil on the immune response of sea bass Dicentrarchus labrax. Dis Aquat Org 15:175–185.  https://doi.org/10.3354/dao015175 CrossRefGoogle Scholar
  105. Oliva-Teles A (2012) Nutrition and health of aquaculture fish. J Fish Dis 35(2):83–108.  https://doi.org/10.1111/j.1365-2761.2011.01333.x CrossRefGoogle Scholar
  106. Olsson JC, Jöborn A, Westerdahl A, Blomberg L, Kjelleberg S, Conway PL (1998) Survival, persistence and proliferation of Vibrio anguillarum in juvenile turbot, Scophthalmus maximus (L.), intestine and faeces. J Fish Dis 21(1):1–9.  https://doi.org/10.1046/j.1365-2761.1998.00327.x CrossRefGoogle Scholar
  107. Olsson JC, Westerdahl A, Conway PL, Kjelleberg S (1992) Intestinal colonization potential of turbot (Scophthalmus maximus) and dab (Limanda limanda) associated bacteria with inhibitory effects against Vibrio anguillarum. Appl Environ Microbiol 58(2):551–556Google Scholar
  108. Ortiz J, Vivanco JP, Quitral V, Larraín MA, Concha G, Aubourg SP (2012) Changes in freshness during frozen storage of farmed coho salmon: effect of replacement of synthetic antioxidants by natural ones in fish feeds. North Am J Aquacult 74(2):224–229.  https://doi.org/10.1080/15222055.2012.675994 CrossRefGoogle Scholar
  109. Ortuño J, Esteban MA, Meseguer J (1999) Effect of high dietary intake of vitamin C on non-specific immune response of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 9(5):429–443.  https://doi.org/10.1006/fsim.1998.0201 CrossRefGoogle Scholar
  110. Ortuño J, Esteban MA, Meseguer J (2000) High dietary intake of α-tocopherol acetate enhances the non-specific immune response of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 10(4):293–307.  https://doi.org/10.1006/fsim.1999.0238 CrossRefGoogle Scholar
  111. Panigrahi A, Azad IS (2007) Microbial intervention for better fish health in aquaculture: the Indian scenario. Fish Physiol Biochem 33(4):429–440.  https://doi.org/10.1007/s10695-007-9160-7 CrossRefGoogle Scholar
  112. Panigrahi A, Kiron V, Puangkaew J, Kobayashi T, Satoh S, Sugita H (2005) The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture 243(1–4):241–254.  https://doi.org/10.1016/j.aquaculture.2004.09.032 CrossRefGoogle Scholar
  113. Parker RB (1974) Probiotics, the other half of the antibiotic story. Animal Nutr Health 29:4–8Google Scholar
  114. Pham MA, Byun HG, Kim KD, Lee SM (2014) Effects of dietary carotenoid source and level on growth, skin pigmentation, antioxidant activity and chemical composition of juvenile olive flounder Paralichthys olivaceus. Aquaculture 431:65–72.  https://doi.org/10.1016/j.aquaculture.2014.04.019 CrossRefGoogle Scholar
  115. Picchietti S, Fausto AM, Randelli E, Carnevali O, Taddei AR, Buonocore F, Scapigliati G, Abelli L (2009) Early treatment with Lactobacillus delbrueckii strain induces an increase in intestinal T-cells and granulocytes and modulates immune-related genes of larval Dicentrarchus labrax (L.). Fish Shellfish Immunol 26(3):368–376.  https://doi.org/10.1016/j.fsi.2008.10.008 CrossRefGoogle Scholar
  116. Pohlenz C, Gatlin DM III (2014) Interrelationships between fish nutrition and health. Aquaculture 431:111–117.  https://doi.org/10.1016/j.aquaculture.2014.02.008 CrossRefGoogle Scholar
  117. Ram CS, Parvati S (2012) Probiotics: the new ecofriendly alternative measures of disease control for sustainable aquaculture. J Fish Aquat Sci 7(2):72–103.  https://doi.org/10.3923/jfas.2012.72.103
  118. Ranjan A (2016) The importance of carotenoids in aquafeeds. Global Aquaculture Alliance, Feb 26 2016. https://www.aquaculturealliance.org/
  119. Ravindran V, Son JH (2011) Feed enzyme technology: present status and future developments. Recent Patents Food Nutrit Agricult 3(2):102–109.  https://doi.org/10.2174/2212798411103020102 CrossRefGoogle Scholar
  120. Ray AK, Ghosh K, Ringo E (2012) Enzyme-producing bacteria isolated from fish. Aquacult Nutr 18(5):465–492.  https://doi.org/10.1111/j.1365-2095.2012.00943.x CrossRefGoogle Scholar
  121. Roberts ML, Davies SJ, Pulsford AL (1995) The influence of ascorbic acid (vitamin C) on non-specific immunity in the turbot (Scophthalmus maximus L.). Fish Shellfish Immunol 5:27–38.  https://doi.org/10.1016/s1050-4648(05)80004-x CrossRefGoogle Scholar
  122. Robertson P, Ó’ Dowd C, Burrells C, Williams P, Austin B (2000) Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 185:235–243.  https://doi.org/10.1016/s0044-8486(99)00349-x
  123. Rosenfeld WD, Zobell CE (1947) Antibiotic production by marine microorganisms. J Bacteriol 54:393–398Google Scholar
  124. Roy T, Mondal S, Ray AK (2009) Phytase-producing bacteria in the digestive tracts of some freshwater fish. Aquacult Res 40:344–353.  https://doi.org/10.1111/j.1365-2109.2008.02100.x CrossRefGoogle Scholar
  125. Saha S, Roy RN, Sen SK, Ray AK (2006) Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquacult Res 37:380–388.  https://doi.org/10.1111/j.1365-2109.2006.01442.x CrossRefGoogle Scholar
  126. Sakai M, Yoshida T, Astuta S, Kobayashi M (1995) Enhancement of resistance to vibriosis in rainbow trout, Oncorhynchus mykiss (Walbaum) by oral administration of Clostridium butyricum bacteria. J Fish Dis 18:187–190.  https://doi.org/10.1111/j.1365-2761.1995.tb00276.x CrossRefGoogle Scholar
  127. Salinas I, Abelli L, Bertoni F, Picchietti S, Roque A, Furones D et al (2008) Monospecies and multispecies probiotic formulations produce different systemic and local immunostimulatory effects in the gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 25:114–123.  https://doi.org/10.1016/j.fsi.2008.03.011 CrossRefGoogle Scholar
  128. Sato M, Kondo T, Yoshinaka R, Ikeda S (1982) Effect of dietary ascorbic acid levels on collagen formation in rainbow trout. Bull Jap Soc Sci Fish 48:553–556.  https://doi.org/10.2331/suisan.48.553 CrossRefGoogle Scholar
  129. Shahidi F, Brown JA (1998) Carotenoid pigments in seafoods and aquaculture. Crit Rev Food Sci Nutr 38(1):1–67.  https://doi.org/10.1080/10408699891274165 CrossRefGoogle Scholar
  130. Sharifuzzaman SM, Austin B (2009) Influence of probiotic feeding duration on disease resistance and immune parameters in rainbow trout. Fish Shellfish Immunol 27:440–445.  https://doi.org/10.1016/j.fsi.2009.06.010 CrossRefGoogle Scholar
  131. Shiau S-Y, Lin Y-H (2015) Chapter 6-Vitamins. In: Dietary nutrients, additives and fish health, 1st edn. Wiley, pp 125–150Google Scholar
  132. Sugita H, Okano R, Suzuki Y, Iwai D, Mizukami M, Akiyama N, Matsuura S (2002) Antibacterial abilities of intestinal bacteria from larval and juvenile Japanese flounder against fish pathogens. Fish Sci 68:1004–1011.  https://doi.org/10.1046/j.1444-2906.2002.00525.x CrossRefGoogle Scholar
  133. Taoka Y, Maeda H, Jo JY, Kim SM, Park S, Yoshikawa T et al (2006) Use of live and dead probiotic cells in tilapia Oreochromis niloticus. Fish Sci 72:755–766.  https://doi.org/10.1111/j.1444-2906.2006.01215.x CrossRefGoogle Scholar
  134. Tewary A, Patra BC (2008) Use of vitamin C as an immunostimulant. Effect on growth, nutritional quality, and immune response of Labeo rohita (Ham.). Fish Physiol Biochem 34:251–259.  https://doi.org/10.1007/s10695-007-9184-z CrossRefGoogle Scholar
  135. Thompson I, Choubert G, Houlihan DF, Secombes CJ (1995) The effect of dietary vitamin A and astaxanthin on the immunocompetence of rainbow trout. Aquaculture 133(2):91–102.  https://doi.org/10.1016/0044-8486(95)00024-V CrossRefGoogle Scholar
  136. Thompson I, Fletcher TC, Houlihan DF, Secombes CJ (1994) The effect of dietary vitamin A on the immunocompetence of Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 12(6):513–523.  https://doi.org/10.1007/BF00004453 CrossRefGoogle Scholar
  137. Thompson I, White A, Fletcher TC, Houlihan DF, Secombes CJ (1993) The effect of stress on the immune response of Atlantic salmon (Salmo salar L.) fed diets containing different amounts of vitamin C. Aquaculture 114:1–18.  https://doi.org/10.1016/0044-8486(93)90246-U CrossRefGoogle Scholar
  138. Tibaldi E, Lanari D, D’Agaro E, Ballestrazzi R (2001) Nutrizione in acquacoltura. In: Acquacoltura responsabile-Verso le produzioni acquatiche del terzo millennio. UNIMAR-UNIPROM, pp 144–152Google Scholar
  139. Vendrell D, Balcázar JL, de Blas I, Ruiz-Zarzuela I, Girones O, Muzquiz JL (2008) Protection of rainbow trout (Oncorhynchus mykiss) from lactococcosis by probiotic bacteria. Comp Immunol Microbiol Infect Dis 31:337–345.  https://doi.org/10.1016/j.cimid.2007.04.002 CrossRefGoogle Scholar
  140. Verlhac V, NDoye A, Gabaudan J, Troutaud D, Deschaux P (1993) Vitamin nutrition and fish immunity: influence of antioxidant vitamins (C and E) on immune response of rainbow trout (Oncorhynchus mykiss). In: Fish nutrition in practice. INRA, Paris, France, pp 167–177Google Scholar
  141. Verlhac Trichet V, Santigosa E, Cochin E, Gabaudan J (2015) Chapter 7-The effect of vitamin C on fish health. In: Dietary nutrients, additives and fish health, 1st edn. Wiley, pp 151–171Google Scholar
  142. Vine NG, Leukes WD, Kaiser H (2004) In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus. FEMS Microbiol Lett 231:145–152.  https://doi.org/10.1016/s0378-1097(03)00954-6 CrossRefGoogle Scholar
  143. Waagbø R (1994) The impact of nutritional factors on the immune system in Atlantic salmon, Salmo salar L.: a review. Aquac Res 25(2):175–197.  https://doi.org/10.1111/j.1365-2109.1994.tb00573.x CrossRefGoogle Scholar
  144. Wang C, Lovell RT, Klesius PH (1997) Response to Edwardsiella ictaluri challenge by channel catfish fed organic and inorganic sources of selenium. J Aquat Animal Health 9:172–179.  https://doi.org/10.1577/1548-8667(1997)009<0172:rteicb>2.3.co;2 CrossRefGoogle Scholar
  145. Wang FB, Luo L, Lin SM, Li Y, Chen S, Wang YG, Wen H, Hu CJ (2011) Dietary magnesium requirements of juvenile grass carp, Ctenopharyngodon idella. Aquacult Nutr 17:e691–e700.  https://doi.org/10.1111/j.1365-2095.2010.00829.x CrossRefGoogle Scholar
  146. Wang YB, Tian ZQ, Yao JT, Li WF (2008) Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture 277:203–207.  https://doi.org/10.1016/j.aquaculture.2008.03.007 CrossRefGoogle Scholar
  147. Wang Z, Mai K, Liufu Z, Ma H, Xu W, Ai Q, Zhang W, Tan B, Wang X (2006) Effect of high dietary intakes of vitamin E and n-3 HUFA on immune responses and resistance to Edwardsiella tarda challenge in Japanese flounder (Paralichthys olivaceus, Temminck and Schlegel). Aquac Res 37:681–692.  https://doi.org/10.1111/j.1365-2109.2006.01481.x CrossRefGoogle Scholar
  148. Webster CD, Lim C (2015) Chapter 9-Minerals. In: Dietary nutrients, additives and fish health, 1st edn. Wiley, pp 195–210Google Scholar
  149. Wen Z-P, Feng L, Jiang J, Liu Y, Zhou X-Q (2010) Immune response, disease resistance and intestinal microflora of juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of pantothenic acid. Aquac Nutr 16(4):430–436.  https://doi.org/10.1111/j.1365-2095.2009.00686.x CrossRefGoogle Scholar
  150. Wise DJ, Tomasso JR, Brandt TM (1988) Ascorbic-acid inhibition of nitrite-induced methemoglobinemia in channel catfish. Prog Fish Cult 50:77–80.  https://doi.org/10.1577/1548-8640(1988)050<0077:AAIONI>2.3.CO;2 CrossRefGoogle Scholar
  151. Wise DJ, Tomasso JR, Gatlin DM III, Bai SC, Blazer VS (1993) Effects of dietary selenium and vitamin E on red blood cell peroxidation, glutathione peroxidase activity, and macrophage superoxide anion production in channel catfish. J Aquat Animal Health 5(3):177–182.  https://doi.org/10.1577/1548-8667(1993)005<0177:EODSAV>2.3.CO;2 CrossRefGoogle Scholar
  152. Zhou Y, Yuan X, Liang X-F, Fang L, Li J, Guo X, Bai X, He S (2013) Enhancement of growth and intestinal flora in grass carp: the effect of exogenous cellulase. Aquaculture 416–417:1–7.  https://doi.org/10.1016/j.aquaculture.2013.08.023 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Laura Gasco
    • 1
  • Francesco Gai
    • 2
  • Giulia Maricchiolo
    • 3
  • Lucrezia Genovese
    • 4
  • Sergio Ragonese
    • 5
  • Teresa Bottari
    • 6
  • Gabriella Caruso
    • 7
  1. 1.Department of Agricultural, Forest, and Food SciencesUniversity of TurinGrugliascoItaly
  2. 2.Institute of Food Production Sciences—CNRGrugliascoItaly
  3. 3.Institute for Coastal Marine Environment—CNRMessinaItaly
  4. 4.Institute for Coastal Marine Environment—CNRMessinaItaly
  5. 5.Institute for Coastal Marine Environment—CNRMazara del Vallo (TP)Italy
  6. 6.Institute for Coastal Marine Environment—CNRMessinaItaly
  7. 7.Institute for Coastal Marine Environment—CNRMessinaItaly

Personalised recommendations