Fishmeal Alternative Protein Sources for Aquaculture Feeds

  • Laura Gasco
  • Francesco Gai
  • Giulia Maricchiolo
  • Lucrezia Genovese
  • Sergio Ragonese
  • Teresa Bottari
  • Gabriella Caruso
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Aquaculture currently accounts for approximately 50% of fish consumed by humans. The future development of aquaculture will be greatly constrained by the increasing costs of fishmeal and fish oil. To remedy this situation, scientific research and feed manufacturers have made a significant progress by looking for alternative protein sources for use in fish diets in order to develop feeds that provide adequate nutrition for animals’ growth, while reducing to minimum the use of traditional sources of protein. This chapter aims at critically reviewing recent studies, carried out worldwide, about the effects of the inclusion of new protein sources as insect, poultry by-products, meat and bone meals and other protein sources alternative to fishmeal in aquafeeds. In particular, the impacts of these protein sources in terms of growth, nutrient digestibility, fillet quality traits and sensorial perception in the most important farmed marine and freshwater fish species are evaluated.

Keywords

Alternative proteins Aquaculture Fishmeal Insects Poultry By-Products Processed animal proteins 

References

  1. AAFCO (2010) In: Feed inspector’s manual, 5th edn. Association of American Feed Control Officials (AAFCO), ChampaignGoogle Scholar
  2. Adewolu MA, Ikenweiwe NB, Mulero SM (2010) Evaluation of an animal protein mixture as a replacement for fishmeal in practical diets for fingerlings of Clarias gariepinus (Burchell, 1822). Isr J Aquacult Bamidgeh 5(62):237–244Google Scholar
  3. Aldrich G (2006) Rendered products in pet food. In: Meeker DL (ed) Essential rendering. The National Renderers Association, Alexandria, pp 159–177Google Scholar
  4. Alexis M, Papaparaskeva-Papoutsoglou E, Theochari V (1985) Formulation of practical diets for rainbow trout Salmo gairdneri made by partial or complete substitution of fish meal by poultry-by products and certain plant by-products. Aquacult 50(1–2):61–73.  https://doi.org/10.1016/0044-8486(85)90153-x CrossRefGoogle Scholar
  5. Anderson SJ (2000) Increasing calcium levels in cultured insects. Zoo Biol 19(1):1–9.  https://doi.org/10.1002/(sici)1098-2361(2000)19:1<1:aid-zoo1>3.0.co;2-f CrossRefGoogle Scholar
  6. Aniebo AO, Erondu ES, Owen OJ (2008) Proximate composition of house fly larvae (Musca domestica) meal generated from mixture of cattle blood and wheat bran. Livest Res Rural Develop 20(12):1–5Google Scholar
  7. Aniebo AO, Erondu ES, Owen OJ (2009) Replacement of fish meal with maggot meal in African catfish (Clarias gariepinus) diets. Rev Cient UDO Agric 9:666–671Google Scholar
  8. Aniebo AO, Owen OJ (2010) Effects of age and method of drying on the proximate composition of house fly larvae (Musca domestica Linnaeus) meal (HFLM). Pak J Nutr 9(5):485–487.  https://doi.org/10.3923/pjn.2010.485.487 CrossRefGoogle Scholar
  9. Atse BC, Ossey YB, Koffi KM, Kouame PL (2014) Effects of feeding by-products; maggot meal, fish meal, soybean meal, blood meal and beef brain on growth, survival and carcass composition of African catfish, Heterobranchus longifilis Valenciennes, 1840 larvae under recirculating conditions. Int J Agric Innov Res 2(4):530–535Google Scholar
  10. Badillo D, Herzka SZ, Viana MT (2014) Protein retention assessment of four levels of poultry by-product substitution of fishmeal in rainbow trout (Oncorhynchus mykiss) diets using stable isotopes of nitrogen (d15 N) as natural tracers. PLoS ONE 9(9):e107523.  https://doi.org/10.1371/journal.pone.0107523 CrossRefGoogle Scholar
  11. Badillo Zapata D, Lazo JP, Herzka SZ, Viana MT (2016) The effect of substituting fishmeal with poultry by-product meal in diets for Totoaba macdonaldi juveniles. Aquacult Res 47(6):1778–1789.  https://doi.org/10.1111/are.12636 CrossRefGoogle Scholar
  12. Barreto-Curiel F, Parés-Sierra G, Correa-Reyes G, Durazo-Beltran E, Viana MT (2016) Total and partial fishmeal substitution by poultry by-product meal (petfood grade) and enrichment with acid fish silage in aquafeeds for juveniles of rainbow trout Oncorhynchus mykiss. Lat Am J Aquat Res 44(2):327–335.  https://doi.org/10.3856/vol44-issue2-fulltext-13 CrossRefGoogle Scholar
  13. Barroso FG, de Haro C, Sanchez-Muros MJ, Venegas E, Martínez-Sánchez A, Pérez-Bañón C (2014) The potential of various insect species for use as food for fish. Aquacult 422–423:193–201.  https://doi.org/10.1016/j.aquaculture.2013.12.024 CrossRefGoogle Scholar
  14. Belforti M, Gai F, Lussiana C, Renna M, Malfatto V, Rotolo L, De Marco M, Dabbou S, Schiavone A, Zoccarato I, Gasco L (2015) Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital J Anim Sci 14(4):670–675.  https://doi.org/10.4081/ijas.2015.4170 CrossRefGoogle Scholar
  15. Belforti M, Lussiana C, Malfatto V, Rotolo L, Zoccarato I, Gasco L (2014) Two rearing substrates on Tenebrio molitor meal composition: issues on aquaculture and biodiesel production. In: Vantomme P, Munke C, van Huis A (eds) 1st international conference ‘insects to feed the world’. Wageningen University, Ede-Wageningen, The Netherlands, p 59Google Scholar
  16. Belluco S, Losasso C, Maggioletti M, Alonzi C, Paoletti M, Ricci A (2013) Edible insects in a food safety and nutritional perspective: a critical review. Compr Rev Food Sci Food Saf 12(3):296–313.  https://doi.org/10.1111/1541-4337.12014 CrossRefGoogle Scholar
  17. Bondari K, Sheppard DC (1981) Soldier fly larvae as feed in commercial fish production. Aquacult 24:103–109.  https://doi.org/10.1016/0044-8486(81)90047-8 CrossRefGoogle Scholar
  18. Bondari K, Sheppard DC (1987) Soldier fly, Hermetia illucens L., larvae as feed for channel catfish, Ictalurus punctatus (Rafinesque), and blue tilapia, Oreochromis aureus (Steindachner). Aquacult Res 18(3):209–220.  https://doi.org/10.1111/j.1365-2109.1987.tb00141.x CrossRefGoogle Scholar
  19. Borgogno M, Dinnella C, Iaconisi V, Fusi R, Scarpaleggia C, Schiavone A, Monteleone E, Gasco L, Parisi G (2017) Inclusion of Hermetia illucens larvae meal on rainbow trout (Oncorhynchus mykiss) feed: effect on sensory profile according to static and dynamic evaluations. J Sci Food Agric 97(10):3402–3411.  https://doi.org/10.1002/jsfa.8191 CrossRefGoogle Scholar
  20. Bureau DP, Harris AM, Cho CY (1999) Apparent digestibility of rendered animal protein ingredients for rainbow trout (Oncorhynchus mykiss). Aquacult 180(3–4):345–358.  https://doi.org/10.1016/s0044-8486(99)00210-0 CrossRefGoogle Scholar
  21. Bureau DP (2006) Rendered products in fish aquaculture feeds. In: Meeker DL (ed) The National Renderers Association, Alexandria, pp 179-184Google Scholar
  22. Bureau DP, Harris AM, Bevan DJ, Simmons LA, Azevedo PA, Cho CY (2000) Feather meals and meat and bone meals from different origins as protein sources in rainbow trout (Oncorhynchus mykiss) diets. Aquacult 181(3–4):281–291.  https://doi.org/10.1016/s0044-8486(99)00232-x CrossRefGoogle Scholar
  23. Carvalho RAPLF, Ota RH, Kadry VO, Tacon AGJ, Lemos D (2016) Apparent digestibility of protein, energy and amino acids of six protein sources included at three levels in diets for juvenile white shrimp Litopenaeus vannamei reared in high performance conditions. Aquacult 465:223–234.  https://doi.org/10.1016/j.aquaculture.2016.09.010 CrossRefGoogle Scholar
  24. Castillo-Lopez E, Espinoza-Villegas RE, Viana MT (2016) In vitro digestion comparison from fish and poultry by-product meals from simulated digestive process at different times of the Pacific Bluefin tuna, Thunnus orientalis. Aquacult 458:187–194.  https://doi.org/10.1016/j.aquaculture.2016.03.011 CrossRefGoogle Scholar
  25. Chatzifotis S, Polemitou I, Divanach P, Antonopoulou E (2008) Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex, Dentex dentex, fed a fish meal/soy protein concentrate-based diet. Aquacult 275(1–4):201–208.  https://doi.org/10.1016/j.aquaculture.2007.12.013 CrossRefGoogle Scholar
  26. Cheng ZJ, Hardy RW (2002) Apparent digestibility coefficients and nutritional value of cottonseed meal for rainbow trout (Oncorhynchus mykiss). Aquacult 212(1–4):361–372.  https://doi.org/10.1016/s0044-8486(02)00260-0 CrossRefGoogle Scholar
  27. Cho CY, Slinger SJ (1979) Apparent digestibility measurement in feedstuffs for rainbow trout. In: Halver JE, Tiew K (eds) Finfish nutrition and fishfeed technology, vol. II. Heenemann, Berlin, pp 239–247Google Scholar
  28. Cruz-Suárez LE, Pena-Rodrıguez A, Nieto-Lopez M, Villarreal-Cabazos D, Tapia-Salazar M, Guajardo-Barbosa C, Ricque-Marie D (2007) Apparent amino acids, protein, and dry matter digestibility coefficients of six rendered animal products by the white shrimp Litopenaeus vannamei. In: Book of abstracts. Latin American & Caribbean chapter of the world aquaculture society, San Juan, Puerto Rico, 5–9 November 2007, p 32Google Scholar
  29. Dale N, Fancher B, Zumbado M, Villacres A (1993) Metabolizable energy content of poultry offal meal. J Appl Poultry Res 2(1):40–42.  https://doi.org/10.1093/japr/2.1.40 CrossRefGoogle Scholar
  30. Desai AR, Links MG, Collins SA, Mansfield GS, Drew MD, Van Kessel AG, Hill JE (2012) Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquacult 350–353:134–142.  https://doi.org/10.1016/j.aquaculture.2012.04.005 CrossRefGoogle Scholar
  31. Diener S, Gutiérrez FR, Zurbügg C, Tockner K (2009) Are larvae of the black soldier fly–Hermetia illucens—a financially viable option for organic waste management in Costa Rica? In: Proceedings of the Twelfth international waste management and landfill symposium ‘Sardinia 2009’, S. Margherita di Pula, Cagliari, Italy, 5–9 October 2009Google Scholar
  32. Dong FM, Hardy RW, Haard NF, Barrows FT, Rasco BA, Fairgrieve WT, Forster IP (1993) Chemical composition and protein digestibility of poultry by-product meals for salmonid diets. Aquacult 116(2–3):149–158.  https://doi.org/10.1016/0044-8486(93)90005-j CrossRefGoogle Scholar
  33. Dong GF, Yang YO, Song XM, Yu L, Zhao TT, Huang GL, Hu ZJ, Zhang JL (2013) Comparative effects of dietary supplementation with maggot meal and soybean meal in gibel carp (Carassius auratus gibelio) and darkbarbel catfish (Pelteobagrus vachelli): growth performance and antioxidant responses. Aquacult Nutr 19(4):543–554.  https://doi.org/10.1111/anu.12006 CrossRefGoogle Scholar
  34. Dozier WA, Dale NM (2005) Metabolizable energy of feed-grade and pet food-grade poultryby-product meals. J Appl Poultry Res 14(2):349–351.  https://doi.org/10.1093/japr/14.2.34 CrossRefGoogle Scholar
  35. El-Haroun ER, Azevedo PA, Bureau DP (2009) High dietary incorporation levels of rendered animal protein ingredients on performance of rainbow trout Oncorhynchus mykiss (Walbaum, 1972). Aquacult 290(3–4):269–274.  https://doi.org/10.1016/j.aquaculture.2009.02.014 CrossRefGoogle Scholar
  36. El-Sayed AFM (2014) Is dietary taurine supplementation beneficial for farmed fish and shrimp? A comprehensive review. Rev Aquacult 6(4):241–255.  https://doi.org/10.1111/raq.12042 CrossRefGoogle Scholar
  37. Esteban MA, Cuesta A, Ortuño J, Meseguer J (2001) Immuno modulatory effects of dietary intake of chitin on gilthead sea bream (Sparus aurata L.) innate immune system. Fish Shellfish Immunol 11(4):303–315.  https://doi.org/10.1006/fsim.2000.0315 CrossRefGoogle Scholar
  38. FAO (2014) The state of world fisheries and aquaculture 2014. Opportunities and challenges. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  39. FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  40. Faruck MO, Yusof F, Chowdhury S (2016) An overview of antifungal peptides derived from insect. Peptides 80:80–88.  https://doi.org/10.1016/j.peptides.2015.06.001 CrossRefGoogle Scholar
  41. Fasakin EA, Balogun AM, Ajayi OO (2003) Evaluation of full-fat and defatted maggot meals in the feeding of Clariid catfish Clarias gariepinus fingerlings. Aquacult Res 34(9):733–738.  https://doi.org/10.1046/j.1365-2109.2003.00876.x CrossRefGoogle Scholar
  42. Fasakin EA, Serwata RD, Davies SJ (2005) Comparative utilization of rendered animal derived products with or without composite mixture of soybean meal in hybrid tilapia. Aquacult 249:329–338Google Scholar
  43. Fowler LG (1991) Poultry by-product meal as a dietary protein source in fall chinook salmon diets. Aquacult 99(3–4):309–321.  https://doi.org/10.1016/0044-8486(91)90251-2 CrossRefGoogle Scholar
  44. Gallagher ML, Degani G (1988) Poultry meal and poultry oil as sources of protein and lipid in the diet of European eels (Anguilla anguilla). Aquacult 73(1–4):177–187.  https://doi.org/10.1016/0044-8486(88)90052-x CrossRefGoogle Scholar
  45. Gasco L, Henry M, Piccolo G, Marono S, Gai F, Renna M, Lussiana C, Antonopoulou F, Mola P, Chatzifotis S (2016) Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: growth performance, whole body composition and in vivo apparent digestibility. Anim Feed Sci Technol 220:34–45.  https://doi.org/10.1016/j.anifeedsci.2016.07.003 CrossRefGoogle Scholar
  46. Gasco L, Schiavone A, Mei T, Meneguz M, Gariglio M, Caimi C, Dama A, Renna M, Dabbou S, Bressan E, Montagnani M, Prato A, Bonaldo A, Prearo M, Gai F (2017) Effects of black soldier fly (Hermetia illucens) meal in sturgeons (Acipenser baerii) juveniles feeds: preliminary results. In: Proceedings of the aquaculture america conference, San Antonio, Texas, 19–22 February 2017Google Scholar
  47. Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu GS, Krogdahl A, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult Res 38(6):551–579.  https://doi.org/10.1111/j.1365-2109.2007.01704.x CrossRefGoogle Scholar
  48. Gaylord TG, Rawles SD (2005) The modification of poultry by-product meal for use in hybrid striped bass Morone chrysops x M. saxatilis diets. J World Aquacult Soc 36(3): 363–374.  https://doi.org/10.1111/j.1749-7345.2005.tb00340.x
  49. Goda M, El-Haroun ER, Kabir Chowdhury MA (2007) Effect of totally or partially replacing fish meal by alternative protein sources on growth of African catfish Clarias gariepinus (Burchell, 1822) reared in concrete tanks. Aquacult Res 38(3):279–287.  https://doi.org/10.1111/j.1365-2109.2007.01663.x CrossRefGoogle Scholar
  50. Guillame J, Kaushik SJ, Bergot P, Métailler R (eds) (2001) Composition and nutritive value of raw materials. Appendix B. In: Nutrition and feeding of fish and crustaceans. Praxis Publishing Ltd, ChichesterGoogle Scholar
  51. Guimarães IG, Pezzato LE, Barros MM (2008) Amino acid availability and protein digestibility of several protein sources for Nile tilapia Oreochromis niloticus. Aquacult Nutr 14(5):396–404.  https://doi.org/10.1111/j.1365-2095.2007.00540.x CrossRefGoogle Scholar
  52. Hamilton CR, Kirstein D, Breitmeyer RE (2006) Public and Animal Health. In: Meeker DL (ed) Essential rendering. The National Renderers Association, Alexandria, pp 71–94Google Scholar
  53. Hardy RW (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquacult Res 41(5):770–776.  https://doi.org/10.1111/j.1365-2109.2009.02349.x CrossRefGoogle Scholar
  54. Henry M, Gasco L, Piccolo G, Fountoulaki E (2015) Review on the use of insects in the diet of farmed fish: past and future. Anim Feed Sci Technol 203:1–22.  https://doi.org/10.1016/j.anifeedsci.2015.03.001 CrossRefGoogle Scholar
  55. Henry M, Gasco L, Chatzifotis S, Piccolo G (2018) Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev Comp Immunol 81:204–209.  https://doi.org/10.1016/j.dci.2017.12.002 CrossRefGoogle Scholar
  56. Hernández C, Olvera-Novoa MA, Hardy RW, Hermosillo A, Reyes C, González B (2010) Complete replacement of fishmeal by porcine and poultry by-product meals in practical diets for fingerlings Nile tilapia Oreochromis niloticus: digestibility and growth performance. Aquacult Nutr 16(1):44–53.  https://doi.org/10.1111/j.1365-2095.2008.00639.x CrossRefGoogle Scholar
  57. Hernández C, Sanchez-Gutierrez Y, Hardy RW, Benitez-Hernandez A, Dominguez-Jimenez P, Gonzales-Rodriguez B, Osuna-Osuna L, Tortoledo O (2014) The potential of pet-grade poultry by-product meal to replace fish meal in the diet of the juvenile spotted rose snapper Lutjanus guttatus (Steindachner, 1869). Aquacult Nutr 20(6):623–631.  https://doi.org/10.1111/anu.12122 CrossRefGoogle Scholar
  58. Hertrampf JW, Piedad-Pascual F (2000) Handbook of ingredients for aquaculture feeds. Kluwer Academic Publishers, LondonCrossRefGoogle Scholar
  59. Hoffman J, Johansen A, Steiro K, Gildberg A, Stenberg E, Bøgwald J (1997) Chitooligosaccharides stimulate Atlantic salmon, Salmo salar L., head kidney leukocytes to enhanced superoxide anion production in vitro. Comp Biochem Physiol B: Biochem Mol Biol 118(1):105–115.  https://doi.org/10.1016/s0305-0491(97)00021-7 CrossRefGoogle Scholar
  60. Iaconisi V, Marono S, Parisi G, Gasco L, Genovese L, Maricchiolo G, Bovera F, Piccolo G (2017) Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquacult 476:49–58.  https://doi.org/10.1016/j.aquaculture.2017.04.007 CrossRefGoogle Scholar
  61. Idowu AB, Amusan AAS, Oyediran AG (2003) The response of Clarias gariepinus fingerlings (Burchell 1822) to the diet containing Housefly maggot (Musca domestica) (L.). Nigerian. J Anim Prod 30(1):139–144.  https://doi.org/10.4314/njap.v30i1.3325 Google Scholar
  62. Józefiak D, Józefiak A, Kierończyk B, Rawski M, Świątkiewicz S, Długos J, Engberg RM (2016) Insects-a natural nutrient source for poultry—a review. Ann Anim Sci 16(2):297–313.  https://doi.org/10.1515/aoas-2016-0010
  63. Khoushab F, Yamabhai M (2010) Chitin research revisited. Mar Drugs 8(7):1988–2012.  https://doi.org/10.3390/md8071988 CrossRefGoogle Scholar
  64. Klasing KC, Thacker P, Lopez MA, Calvert CC (2000) Increasing the calcium content of mealworms (Tenebrio molitor) to improve their nutritional value for bone mineralization of growing chicks. J Zoo Wildl Med 31(4):512–517.  https://doi.org/10.1638/1042-7260(2000)031[0512:itccom]2.0.co;2 CrossRefGoogle Scholar
  65. Kroeckel S, Harjes AGE, Roth I, Katz H, Wuertz S, Susenbeth A, Schulz C (2012) When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fishmeal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquacult 364–365:345–352.  https://doi.org/10.1016/j.aquaculture.2012.08.041 CrossRefGoogle Scholar
  66. Krogdahl A, Penn M, Thorsen J, Refstie S, Bakke AM (2010) Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquacult Res 41(3):333–344.  https://doi.org/10.1111/j.1365-2109.2009.02426.x CrossRefGoogle Scholar
  67. Kureshy N, Davis DA, Aronld CD (2000) Partial replacement of fish meal with meat-and-bone meal, flash-dried poultry by product meal, enzyme digested poultry by-product meal in practical diets for juvenile red drum. North Am J Aquacult 62(4):266–272.  https://doi.org/10.1577/1548-8454(2000)062<0266:profmw>2.0.co;2 CrossRefGoogle Scholar
  68. Li K, Wang Y, Zheng ZX, Jiang RL, Xie NX, Bureau DP (2009) Replacing fish meal with rendered animal protein ingredients in diets for Malabar grouper, Epinephelus malabaricus, reared in net pens. J World Aquacult Soc 40(1):67–75.  https://doi.org/10.1111/j.1749-7345.2008.00227.x CrossRefGoogle Scholar
  69. Li S, Ji H, Zhang B, Tian J, Zhou J, Yu H (2016) Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquacult 465:43–52.  https://doi.org/10.1016/j.aquaculture.2016.08.020 CrossRefGoogle Scholar
  70. Lin YH, Mui JJ (2016) Evaluation of dietary inclusion of housefly maggot (Musca domestica) meal on growth, fillet composition and physiological responses for barramundi, Lates calcarifer. Aquacult Res 48(5):2478–2485.  https://doi.org/10.1111/are.13085 CrossRefGoogle Scholar
  71. Lin S, Mao S, Guan Y, Luo L, Pan Y (2012) Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Aquacult 342–343:36–41.  https://doi.org/10.1016/j.aquaculture.2012.02.009 CrossRefGoogle Scholar
  72. Lock ER, Arsiwalla T, Waagbo R (2016) Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquacult Nutr 22(6):1202–1213.  https://doi.org/10.1111/anu.12343 CrossRefGoogle Scholar
  73. Ma X, Wang F (2014) Replacement of dietary fish meal with poultry by-product meal and soybean meal for golden pompano, Trachinotus ovatus, reared in net pens. J World Aquacult Soc 45(6):662–671.  https://doi.org/10.1111/jwas.12154 CrossRefGoogle Scholar
  74. Makkar HPS, Tran G, Heuze V, Ankers P (2014) State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol 197:1–33.  https://doi.org/10.1016/j.anifeedsci.2014.07.008 CrossRefGoogle Scholar
  75. Marono S, Piccolo G, Laponte R, Di Meo C, Attia YA, Nizza A, Bovera F (2015) In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital J Anim Sci 14(3):338–343.  https://doi.org/10.4081/ijas.2015.3889 CrossRefGoogle Scholar
  76. Maurer V, Holinger M, Amsler Z, Früh B, Wohlfahrt J, Stamer A, Leiber F (2016) Replacement of soybean cake by Hermetia illucens meal in diets for layers. J Insects Food Feed 2(2):83–90.  https://doi.org/10.3920/jiff2015.0071 CrossRefGoogle Scholar
  77. Meeker DL, Hamilton CR (2006) An overview of the rendering industry. In: Meeker DL (ed) Essential rendering. The National Renderers Association, Alexandria, pp 1–16Google Scholar
  78. Ming J, Ye J, Zhang Y, Yang X, Wu C, Shao X, Liu P (2013) The influence of maggot meal and l-carnitine on growth, immunity, antioxidant indices and disease resistance of black carp (Mylopharyngodon piceus). J Chin Cereals Oils Assoc 28:80–86Google Scholar
  79. Moutinho S, Martínez-Llorens S, Tomás-Vidal A, Jover-Cerdá M, Oliva-Teles A, Peres H (2017) Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream (Sparus aurata) juveniles: Growth, feed efficiency, amino acid utilization, and economic efficiency. Aquacult 468:271–277.  https://doi.org/10.1016/j.aquaculture.2016.10.024 CrossRefGoogle Scholar
  80. NRC (1993) Nutrient requirement of fish. National Research Council (NRC), The National Academies Press, Washington, DC.  https://doi.org/10.17226/2115
  81. Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci 106(36):15103–15110.  https://doi.org/10.1073/pnas.0905235106 CrossRefGoogle Scholar
  82. Nengas I, Alexis MN, Davies SJ (1999) High inclusion levels of poultry meals and related by products in diets for gilthead seabream Sparus aurata L. Aquacult 179(1–4):13–23.  https://doi.org/10.1016/s0044-8486(99)00148-9 CrossRefGoogle Scholar
  83. Newton GL, Sheppard DC, Watson DW, Burtle GJ, Dove R (2005) Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. Report for M. Williams, Director of the Animal and Poultry Waste Management Center, North Carolina State University,Raleigh, NC—Agreements between the Nc Attorney General, Smithfield Foods, and Premium Standard Farms, and Frontline Farmers. Available http://www.organicvaluerecovery.com/studies/studies_htm_files/bsf_value_added.pdf. Accessed 29 Dec 2017
  84. Ng WK, Liew FL, Ang LP, Wong KW (2001) Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquacult Res 32:273–280.  https://doi.org/10.1046/j.1355-557x.2001.00024.x CrossRefGoogle Scholar
  85. Ogunji JO, SummanToor RUA, Schulz C, Kloas W (2008a) Growth performance, nutrient utilization of Nile tilapia Oreochromis niloticus fed housefly maggot meal (magmeal) diets. Turk J Fish Aquat Sci 8:141–147Google Scholar
  86. Ogunji JO, Kloas W, Wirth M, Neumann N, Pietsch C (2008b) Effect of housefly maggot meal (magmeal) diets on the performance, concentration of plasma glucose, cortisol and blood characteristics of Oreochromis niloticus fingerlings. J Anim Physiol Anim Nutr 92(4):511–518.  https://doi.org/10.1111/j.1439-0396.2007.00745.x CrossRefGoogle Scholar
  87. Olele NF (2011) Comparative study on the use of natural and artificial based feeds for the culture of Clarias gariepinus fingerlings. J Agricult Biolog Sci 6(1):9–13Google Scholar
  88. Oliva-Teles A, Enes P, Peres H (2015) Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. In: Davis DA (ed) Feed and feeding practice in aquaculture. Woodhead Publishing, Cambridge, pp 203–233CrossRefGoogle Scholar
  89. Parés-Sierra G, Durazo E, Ponce MA, Badillo D, Correa-Reyes G, Viana MT (2014) Partial to total replacement of fishmeal by poultry by-product meal in diets for juvenile rainbow trout (Oncorhynchus mykiss) and their effect on fatty acids from muscle tissue and the time required to retrieve the effect. Aquacult Res 45(9):1459–1469.  https://doi.org/10.1111/are.12092 CrossRefGoogle Scholar
  90. Pfeffer E, Kinsinger S, Rodehutscord M (1995) Influence of the proportion of poultry slaughter by-product and of untreated or hydrothermally treated legume seeds in diets for rainbow trout, Oncorhynchus mykiss Walbaum, on apparent digestibilities of their energy and organic compounds. Aquacult Nutr 1(2):111–117.  https://doi.org/10.1111/j.1365-2095.1995.tb00026.x CrossRefGoogle Scholar
  91. Piccolo G, Iaconisi V, Marono S, Gasco L, Loponte R, Nizza S, Bovera F, Parisi G (2017) Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim Feed Sci Technol 226:12–20.  https://doi.org/10.1016/j.anifeedsci.2017.02.007 CrossRefGoogle Scholar
  92. Pinotti L, Krogdahl A, Givens I, Knight C, Baldi A, Baeten V, Van Raamsdonk L, Woodgate S, Perez Marin D, Luten J (2014) The role of animal nutrition in designing optimal foods of animal origin as reviewed by the COST Action Feed for Health (FA0802). Biotechnol Agron Soc Environ 18(4):471–479Google Scholar
  93. Rawles DD, Riche M, Gaylord TG, Webb J, Freeman DW, Davis M (2006) Evaluation of poultry by-product meal in commercial diets for hybrid stripes bass (Morone chrysops female x M. saxatilis male) in recirculating tank production. Aquacult 259, 1–4:377–389.  https://doi.org/10.1016/j.aquaculture.2006.05.053
  94. Renna M, Schiavone A, Gai F, Dabbou S, Lussiana C, Malfatto V, Prearo M, Capucchio MT, Biasato I, Biasibetti E, De Marco M, Brugiapaglia A, Zoccarato I, Gasco L (2017) Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J Animal Sci Biotechnol 8:57.  https://doi.org/10.1186/s40104-017-0191-3 CrossRefGoogle Scholar
  95. Riche M (2015) Nitrogen utilization from diets with refined and blended poultry byproducts as partial fish meal replacements in diets for low-salinity cultured Florida pompano, Trachinotus carolinus. Aquacult 435:458–466.  https://doi.org/10.1016/j.aquaculture.2014.10.001 CrossRefGoogle Scholar
  96. Roncarati A, Gasco L, Parisi G, Terova G (2015) Growth performance of common catfish (Ameiurus melas Raf.) fingerlings fed mealworm (Tenebrio molitor) diet. J Insects Food Feed 1(3):233–240.  https://doi.org/10.3920/jiff2014.0006
  97. Rossi W Jr, Davis DA (2012) Replacement of fishmeal with poultry by-product meal in the diet of Florida pompano Trachinotus carolinus L. Aquacult 338–341:160–166.  https://doi.org/10.1016/j.aquaculture.2012.01.026 CrossRefGoogle Scholar
  98. Rust MB (2002) Nutritional physiology. In: Halver JE, Hardy RW (eds) Fish Nutrition. The Academic Press, New York, pp 368–446Google Scholar
  99. Salze GP, Davis DA (2015) Taurine: a critical nutrient for future fish feeds. Aquacult 437:215–229.  https://doi.org/10.1016/j.aquaculture.2014.12.006 CrossRefGoogle Scholar
  100. Sánchez-Muros MJ, Barroso FG, Manzano-Agugliaro F (2014) Insect meal as renewable source of food for animal feeding: a review. J Clean Prod 65:16–27.  https://doi.org/10.1016/j.jclepro.2013.11.068 CrossRefGoogle Scholar
  101. Sánchez-Muros MJ, deHaro C, Sanz A, Trenzado CE, Villareces S, Barroso FG (2015) Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquacult Nutr 22(5):943–955.  https://doi.org/10.1111/anu.12313 CrossRefGoogle Scholar
  102. Schiavone A, Cullere M, De Marco M, Meneguz, M, Biasato I, Bergagna S, Gai F, Dabbou S, Gasco L, dalle Zotte AD (2017) Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital J Anim Sci 16, 93–100.  https://doi.org/10.1080/1828051x.2016.1249968
  103. Sealey WM, Gaylord TG, Barrows FT, Tomberlin JK, McGuire MA, Ross C, St-Hilaire S (2011a) Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J World Aquacult Soc 42(1):34–45.  https://doi.org/10.1111/j.1749-7345.2010.00441.x CrossRefGoogle Scholar
  104. Sealey WM, Hardy RW, Barrows FT, Pan Q, Stone DAJ (2011b) Evaluation of 100% fish meal substitution with chicken concentrate, protein poultry by-product blend, and chicken and egg concentrate on growth and disease resistance of juvenile rainbow trout, Oncorhynchus mykiss. J World Aquacult Soc 42(1):46–55.  https://doi.org/10.1111/j.1749-7345.2010.00442.x CrossRefGoogle Scholar
  105. Shapawi R, Wing-Keong N, Saleem M (2007) Replacement of fish meal with poultry by-product meal in diets formulated for the humpback grouper, Cromileptes altivelis. Aquacult 273(1):118–126.  https://doi.org/10.1016/j.aquaculture.2007.09.014 CrossRefGoogle Scholar
  106. Siemianowska E, Kosewska A, Aljewicz M, Skibniewska KA, Polak-Juszczak L, Jarocki A, Jędras M (2013) Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricult Sci 4(6):287–291.  https://doi.org/10.4236/as.2013.46041
  107. Sogbesan O, Ajuonu N, Musa BO, Adewole AM (2006) Harvesting techniques and evaluation of maggot meal as animal dietary protein source for Heteroclarias in outdoor concrete tanks. World J Agric Sci 2(4):394–402Google Scholar
  108. Spranghers T, Ottoboni M, Klootwijk C, Ovyn A, Deboosere S, De Meulenaer B, De Smet S (2016) Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J Sci Food Agric 97(8):2594–2600.  https://doi.org/10.1002/jsfa.8081 CrossRefGoogle Scholar
  109. Srour TM, Essa MA, Abdel-Rahim MM, Mansour MA (2016) Replacement of fish meal with poultry by-product meal (PBM) and its effects on the survival, growth, feed utilization, and microbial load of European seabass, Dicentrarchus labrax fry. Global Adv Res J Agricult Sci 5(7):293–301Google Scholar
  110. Steffens W (1994) Replacing fish meal with poultry by-product meal in diets for rainbow trout Oncorhynchus mykiss. Aquacult 124(1–4):27–34.  https://doi.org/10.1016/0044-8486(94)90351-4 CrossRefGoogle Scholar
  111. St-Hilaire S, Cranfill K, McGuire MA, Mosley EE, Tomberlin JK, Newton L, Sealey W, Sheppard C, Irving S (2007a) Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J World Aquacult Soc 38(2):309–313.  https://doi.org/10.1111/j.1749-7345.2007.00101.x CrossRefGoogle Scholar
  112. St-Hilaire S, Sheppard C, Tomberlin JK, Irving S, Newton L, Mc Guire MA, Mosley EE, Hardy RW, Sealey W (2007b) Fly prepupae as a feedstuff for rainbow trout Oncorhynchus mykiss. J World Aquacult Soc 38(1):59–67.  https://doi.org/10.1111/j.1749-7345.2006.00073.x CrossRefGoogle Scholar
  113. Subhadra B, Lochmann R, Rawles S, Chen R (2006) Effect of fish-meal replacement with poultry by-product meal on the growth, tissue composition and hematological parameters of largemouth bass (Micropterus salmoides) fed diets containing different lipids. Aquacult 260(1–4):221–231.  https://doi.org/10.1016/j.aquaculture.2006.06.029 CrossRefGoogle Scholar
  114. Sugiura SH, Dong FM, Rathbone CK, Hardy RW (1998) Apparent protein digestibility and mineral availabilities in various feed ingredients for salmonid feeds. Aquacult 159(3–4):177–202.  https://doi.org/10.1016/s0044-8486(97)00177-4 CrossRefGoogle Scholar
  115. Surendra KC, Olivier R, Tomberlin JK, Jha R, Khanal SK (2016) Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew Energ 98:197–202.  https://doi.org/10.1016/j.renene.2016.03.022 CrossRefGoogle Scholar
  116. Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquacult 285(1–4):146–158.  https://doi.org/10.1016/j.aquaculture.2008.08.015 CrossRefGoogle Scholar
  117. Tschirner M, Simon A (2015) Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J Insects Food Feed 1(4):249–259.  https://doi.org/10.3920/jiff2014.0008 CrossRefGoogle Scholar
  118. Turchini G, Moretti VM, Mentasti T, Orban E, Valfré F (2007) Effects of dietary lipid source on fillet chemical composition, flavour volatile compounds and sensory characteristics in the freshwater fish tench (Tinca tinca L.). Food Chem 102(4):1144–1155.  https://doi.org/10.1016/j.foodchem.2006.07.003 CrossRefGoogle Scholar
  119. Turker A, Murat Y, Sebahattin E, Burcu K, Erteken A (2005) Potential of poultry by-product meal as a substitute for fish meal in diets for balck seabass turbot Scophthalmus maeoticus: growth and nutrient utilization in winter. Isr J Aquacult Bamidgeh 57(1):49–61Google Scholar
  120. Vidanarachchi JK, Kurukulasuriya MS, Kim SK (2010) Chitin, Chitosan and their Oligosaccharides in Food Industry. In: Kim SK (ed) Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications. CRC Press, New York, pp 543–560CrossRefGoogle Scholar
  121. Wang Y, Guo J, Bureau DP, Zheng HC (2006) Replacement of fish meal by rendered animal protein ingredients in feeds for cuneate drum (Nibeami ichthioides). Aquacult 252(2–4):476–483.  https://doi.org/10.1016/j.aquaculture.2005.07.018 CrossRefGoogle Scholar
  122. Wang Y, Li K, Han H, Zheng ZX (2008) Potential using a blend of renderers animal protein ingredients to replace fish meal in practical diets for Malabar grouper (Epinephelus malabricus). Aquacult 281(1–4):113–117.  https://doi.org/10.1016/j.aquaculture.2008.03.033 CrossRefGoogle Scholar
  123. Wang Y, Ma XZ, Wang F, Wu YB, Qin JG, Li P (2016) Supplementations of poultry by-product meal and selenium yeast increase fish meal replacement by soybean meal in golden pompano (Trachinotus ovatus) diet. Aquacult Res 48(4):1904–1914.  https://doi.org/10.1111/are.13028 CrossRefGoogle Scholar
  124. Webster CD, Thompson KR, Morgan AM, Grisby EJ, Gannam AL (2000) Use of hempseed meal, poultry byproduct meal and canola meal in practical diets without fish meal for sunshine bass (Morone chrysops x M. saxatilis). Aquacult 188(3–4):299–309.  https://doi.org/10.1016/s0044-8486(00)00338-0
  125. Yang Y, Xie S, Cui Y, Zhu X, LeiW Yang Y (2006) Partial and total replacement of fish meal with poultry by-product meal in diets for gibel carp, Carassius auratus gibelio Bloch. Aquacult Res 37(1):40–48.  https://doi.org/10.1111/j.1365-2109.2005.01391.x CrossRefGoogle Scholar
  126. Yang Y, Xie SQ, CuiYB ZhuXM, Yang YX, Yu Y (2004) Effect of replacement of fish meal by meat and bone meal, and poultry by-product meal in diets on the growth and feed utilization of gibel carp, Carassius auratus gibelio. Aquacult Nutr 10:289–294CrossRefGoogle Scholar
  127. Yi HY, Chowdhury M, Huang YD, Yu XQ (2014) Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 98(13):5807–5822.  https://doi.org/10.1007/s00253-014-5792-6 CrossRefGoogle Scholar
  128. Yigit M, Erdem M, Koshio S, Ergun S, Turker A, Karaali B (2006) Substituting fish meal with poultry by-product meal in diets for black Sea turbot Psetta maeotica. Aquacult Nutr 12(5):340–347.  https://doi.org/10.1111/j.1365-2095.2006.00409.x CrossRefGoogle Scholar
  129. Yones AMM, Metwalli AA (2015) Effects of fish meal substitution with poultry by-product meal on growth performance, nutrients utilization and blood contents of juvenile Nile Tilapia (Oreochromis niloticus). J Aquacult Res Development 7:389.  https://doi.org/10.4172/2155-9546.1000389 Google Scholar
  130. Zhou QC, Zhao J, Li P, Wang HL, Wang LG (2011) Evaluation of poultry by-product meal in commercial diets for juvenile cobia (Rachycentron canadum). Aquacult 322–323:122–127.  https://doi.org/10.1016/j.aquaculture.2011.09.042 CrossRefGoogle Scholar
  131. Zuidhof MJ, Molnar CL, Morley FM, Wray TL, Robinson FE, Khan BA, Al-Ani L, Goonewardene LA (2003) Nutritive value of house fly (Musca domestica) larvae as a feed supplement for turkey poults. Anim Feed Sci Technol 105(1–4):225–230.  https://doi.org/10.1016/s0377-8401(03)00004-x CrossRefGoogle Scholar
  132. Żyłowska M, Wyszyńska A, Jagusztyn-Krynicka EK (2011) Defensins—peptides with antimicrobial activity. Post Mikrobiol 50(3):223–234Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Laura Gasco
    • 1
  • Francesco Gai
    • 2
  • Giulia Maricchiolo
    • 3
  • Lucrezia Genovese
    • 4
  • Sergio Ragonese
    • 5
  • Teresa Bottari
    • 6
  • Gabriella Caruso
    • 7
  1. 1.Department of Agricultural, Forest, and Food SciencesUniversity of TurinGrugliascoItaly
  2. 2.Institute of Food Production Sciences—CNRGrugliascoItaly
  3. 3.Institute for Coastal Marine Environment—CNRMessinaItaly
  4. 4.Institute for Coastal Marine Environment—CNRMessinaItaly
  5. 5.Institute for Coastal Marine Environment—CNRMazara del Vallo (TP)Italy
  6. 6.Institute for Coastal Marine Environment—CNRMessinaItaly
  7. 7.Institute for Coastal Marine Environment—CNRMessinaItaly

Personalised recommendations