Advertisement

MoDeS3: Model-Based Demonstrator for Smart and Safe Cyber-Physical Systems

  • András Vörös
  • Márton Búr
  • István Ráth
  • Ákos Horváth
  • Zoltán Micskei
  • László Balogh
  • Bálint Hegyi
  • Benedek Horváth
  • Zsolt Mázló
  • Dániel Varró
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10811)

Abstract

We present MoDeS3, a complex research demonstrator illustrating the combined use of model-driven development, formal verification, safety engineering and IoT technologies for smart and safe cyber-physical systems. MoDeS3 represents a smart transportation system-of-systems composed of a model railway and a crane which may automatically load and unload cargo from trains where both subsystems need to fulfill functional and safety requirements. The demonstrator is built by using the model-based software engineering principle, while the system level safety is ensured by the combined use of design-time and runtime verification and validation techniques.

Keywords

Smart cyber-physical systems Model-driven engineering Formal methods Education Demonstrator 

Notes

Acknowledgment

MoDeS3 is a joint effort of many participants. It was partially supported by MTA-BME Lendület Research Group on Cyber-Physical Systems the ARTEMIS JU R5-COP project and the NSERC RGPIN-04573-16 project. MoDeS3 also received financial and technical support from our industrial partners: IncQuery Labs Ltd., Quanopt Ltd., Ericsson Hungary and Miniversum. The TITAN Xp used for this research was donated by the NVIDIA Corporation. Colleagues at Dept. of Measurement and Information Systems (BME) worked on the project beside the authors: István Majzik, Gábor Szárnyas, and Oszkár Semeráth. We also thank the hard work of our students: Flórán Deé, Márton Elekes, Anna Gujgiczer, Bence Graics, Raimund Konnerth, Gergő Somos, and Sámuel Várallyay.

References

  1. 1.
    Balogh, L., et al.: Distributed and heterogeneous event-based monitoring in smart cyber-physical systems. In: MT CPS Workshop (CPS Week 2016) (2016)Google Scholar
  2. 2.
    Behrmann, G., et al.: UPPAAL 4.0. In: Third International Conference on the Quantitative Evaluation of Systems, pp. 125–126. IEEE (2006)Google Scholar
  3. 3.
    Búr, M., et al.: Distributed graph queries for runtime monitoring of cyber-physical systems. In: International Conference on Fundamental Approaches to Software Engineering (2018, accepted)Google Scholar
  4. 4.
    Cheng, B.H.C., et al.: Using models at runtime to address assurance for self-adaptive systems. In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time. LNCS, vol. 8378, pp. 101–136. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08915-7_4 CrossRefGoogle Scholar
  5. 5.
    Dávid, I., Ráth, I., Varró, D.: Foundations for streaming model transformations by complex event processing. Softw. Syst. Model. 17(1), 1–28 (2016)Google Scholar
  6. 6.
    Dubey, A., et al.: Resilience at the edge in cyber-physical systems. In: FMEC, pp. 139–146, May 2017Google Scholar
  7. 7.
    Havelund, K.: Rule-based runtime verification revisited. STTT 17(2), 143–170 (2015)CrossRefGoogle Scholar
  8. 8.
    Lee, E.A.: Cyber physical systems: design challenges. In: 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing, pp. 363–369 (2008)Google Scholar
  9. 9.
    Lee, E.A., et al.: The swarm at the edge of the cloud. IEEE Des. Test 31(3), 8–20 (2014)CrossRefGoogle Scholar
  10. 10.
    Medhat, R., et al.: Runtime monitoring of cyber-physical systems under timing and memory constraints. ACM T. Embed. Comput. Syst. 14(4), 1–29 (2015)CrossRefGoogle Scholar
  11. 11.
    Molnár, V., et al.: The gamma statechart composition framework. In: ICSE 2018: Demonstrations (2018, accepted)Google Scholar
  12. 12.
    Nielsen, C.B., et al.: Systems of systems engineering: basic concepts, model-based techniques, and research directions. ACM Comput. Surv. 48(2), 18 (2015)CrossRefGoogle Scholar
  13. 13.
    Rushby, J.: Runtime certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 21–35. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89247-2_2 CrossRefGoogle Scholar
  14. 14.
    Tóth, T., Vörös, A.: Verification of a real-time safety-critical protocol using a modelling language with formal data and behaviour semantics. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F. (eds.) SAFECOMP 2014. LNCS, vol. 8696, pp. 207–218. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10557-4_24 Google Scholar
  15. 15.
    Vierhauser, M., et al.: Reminds: a flexible runtime monitoring framework for systems of systems. J. Syst. Softw. 112, 123–136 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • András Vörös
    • 1
    • 2
  • Márton Búr
    • 1
    • 4
  • István Ráth
    • 2
    • 3
  • Ákos Horváth
    • 2
    • 3
  • Zoltán Micskei
    • 2
  • László Balogh
    • 2
  • Bálint Hegyi
    • 2
  • Benedek Horváth
    • 2
  • Zsolt Mázló
    • 2
    • 3
  • Dániel Varró
    • 1
    • 2
    • 4
  1. 1.MTA-BME Lendület Cyber-Physical Systems Research GroupBudapestHungary
  2. 2.Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary
  3. 3.IncQuery Labs Ltd.BudapestHungary
  4. 4.Department of Electrical and Computer EngineeringMcGill UniversityMontrealCanada

Personalised recommendations