Advertisement

Tuning Permissiveness of Active Safety Monitors for Autonomous Systems

  • Lola Masson
  • Jérémie Guiochet
  • Hélène Waeselynck
  • Kalou Cabrera
  • Sofia Cassel
  • Martin Törngren
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10811)

Abstract

Robots and autonomous systems have become a part of our everyday life, therefore guaranteeing their safety is crucial. Among the possible ways to do so, monitoring is widely used, but few methods exist to systematically generate safety rules to implement such monitors. Particularly, building safety monitors that do not constrain excessively the system’s ability to perform its tasks is necessary as those systems operate with few human interventions. We propose in this paper a method to take into account the system’s desired tasks in the specification of strategies for monitors and apply it to a case study. We show that we allow more strategies to be found and we facilitate the reasoning about the trade-off between safety and availability.

References

  1. 1.
    NuSMV home page. http://nusmv.fbk.eu/. Accessed Nov 2017
  2. 2.
    Safety Monitoring Framework. LAAS-CNRS Project. https://www.laas.fr/projects/smof. Accessed Dec 2017
  3. 3.
    Adam, S., Larsen, M., Jensen, K., Schultz, U.P.: Rule-based dynamic safety monitoring for mobile robots. J. Softw. Eng. Robot. 7, 120–141 (2016)Google Scholar
  4. 4.
    Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur. Comput. 1, 11–33 (2004)CrossRefGoogle Scholar
  5. 5.
    Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-fault monitoring tools. Trans. Softw. Eng. 30, 859–872 (2004)CrossRefGoogle Scholar
  6. 6.
    Falcone, Y., Fernandez, J.-C., Mounier, L.: What can you verify and enforce at runtime? Int. J. Softw. Tools Technol. Transf. 14, 349–382 (2012)CrossRefGoogle Scholar
  7. 7.
    Fox, J., Das, S.: Safe and Sound - Artificial Intelligence in Hazardous Applications. AAAI Press/MIT Press, Palo Alto (2000)Google Scholar
  8. 8.
    Guiochet, J.: Hazard analysis of human-robot interactions with HAZOP-UML. Saf. Sci. 84, 225–237 (2016)CrossRefGoogle Scholar
  9. 9.
    Haddadin, S., Suppa, M., Fuchs, S., Bodenmüller, T., Albu-Schäffer, A., Hirzinger, G.: Towards the robotic co-worker. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) The 14th International Symposium on Robotics Research (ISRR2011), vol. 70, pp. 261–282. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19457-3_16 Google Scholar
  10. 10.
    Huang, J., Erdogan, C., Zhang, Y., Moore, B., Luo, Q., Sundaresan, A., Rosu, G.: ROSRV: runtime verification for robots. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 247–254. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11164-3_20 Google Scholar
  11. 11.
    Jiang, H., Elbaum, S., Detweiler, C.: Inferring and monitoring invariants in robotic systems. Auton. Robot 41, 1027–1046 (2017)CrossRefGoogle Scholar
  12. 12.
    Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr. Program. 78, 293–303 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for run-time security policies. IJIS 4, 2–16 (2005)CrossRefGoogle Scholar
  14. 14.
    Machin, M., Dufossé, F., Blanquart, J.-P., Guiochet, J., Powell, D., Waeselynck, H.: Specifying safety monitors for autonomous systems using model-checking. In: Bondavalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 262–277. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10506-2_18 Google Scholar
  15. 15.
    Machin, M., Guiochet, J., Waeselynck, H., Blanquart, J.-P., Roy, M., Masson, L.: SMOF - a safety monitoring framework for autonomous systems. IEEE Trans. Syst., Man Cybern. PP, 1–14 (2016)Google Scholar
  16. 16.
    Martinelli, F., Matteucci, I., Morisset, C.: From qualitative to quantitative enforcement of security policy. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012. LNCS, vol. 7531, pp. 22–35. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33704-8_3 CrossRefGoogle Scholar
  17. 17.
    Masson, L., Guiochet, J., Waeselynck, H., Desfosses, A., Laval, M.: Synthesis of safety rules for active monitoring: application to an airport light measurement robot. In: 2017 First IEEE International Conference on Robotic Computing (IRC) (2017)Google Scholar
  18. 18.
    Pace, C., Seward, D.: A safety integrated architecture for an autonomous safety excavator. In: International Symposium on Automation and Robotics in Construction (2000)Google Scholar
  19. 19.
    Roderick, S., Roberts, B., Atkins, E., Akin, D.: The ranger robotic satellite servicer and its autonomous software-based safety system. Intell. Syst. 19, 12–19 (2004)CrossRefGoogle Scholar
  20. 20.
    SAPHARI: Safe and Autonomous Physical Human-Aware Robot Interaction. Project supported by the European Commission under the 7th Framework Programme. (2011–2015). www.saphari.eu. Accessed Nov 2017
  21. 21.
    Woodman, R., Winfield, A.F., Harper, C., Fraser, M.: Building safer robots: safety driven control. Int. J. Robot. Res. 31, 1603–1626 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lola Masson
    • 1
  • Jérémie Guiochet
    • 1
    • 2
  • Hélène Waeselynck
    • 1
  • Kalou Cabrera
    • 1
  • Sofia Cassel
    • 3
  • Martin Törngren
    • 3
  1. 1.LAAS-CNRS, CNRSToulouseFrance
  2. 2.Université de Toulouse, UPSToulouseFrance
  3. 3.KTHStockholmSweden

Personalised recommendations