Skip to main content

Hemodynamic and Electrocardiographic Aspects of Uncomplicated Singleton Pregnancy

  • Chapter
  • First Online:
Sex-Specific Analysis of Cardiovascular Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1065))

Abstract

Pregnancy is associated with significant changes in maternal hemodynamics, which are triggered by profound systemic vasodilation and mediated through the autonomic nervous system as well as the renin-angiotensin-aldosterone system. Vascular function changes to help accommodate an increase in intravascular volume due to blood volume expansion associated with pregnancy while maintaining the efficiency of ventricular-arterial coupling and diastolic perfusion pressure. The heart undergoes physiological (eccentric) hypertrophy due to increased volume load and cardiac stroke work, whereas the functional change of the left ventricle remains controversial. There are changes in cardiac electrical activity during pregnancy which can be detected in the electrocardiogram that are not related to disease. Sympathetic activation is a common phenomenon during uncomplicated pregnancy and may be a compensatory mechanism induced by profound systemic vasodilation and a decrease in mean arterial pressure. Despite marked sympathetic activation, vasoconstrictor responsiveness is blunted during uncomplicated pregnancy. There are race and ethnic differences in maternal hemodynamic adaptations to uncomplicated pregnancy, which may be attributed to differences in socioeconomic status or in prevalence rates of cardiovascular risk factors.

Art work by Piet Michiels, Leuven, Belgium

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043–65.

    Article  Google Scholar 

  2. Abehsira G, Bachelot A, Badilini F, Koehl L, Lebot M, Favet C, Touraine P, Funck-Brentano C, Salem JE. Complex influence of gonadotropins and sex steroid hormones on QT interval duration. J Clin Endocrinol Metab. 2016;101:2776–84.

    Article  PubMed  CAS  Google Scholar 

  3. Accini JL, Sotomayor A, Trujillo F, Barrera JG, Bautista L, Lopez-Jaramillo P. Colombian study to assess the use of noninvasive determination of endothelium-mediated vasodilatation (CANDEV). Normal values and factors associated. Endothelium. 2001;8:157–66.

    Article  PubMed  CAS  Google Scholar 

  4. Adamson DL, Nelson-Piercy C. Managing palpitations and arrhythmias during pregnancy. Heart. 2007;93:1630–6.

    PubMed  PubMed Central  Google Scholar 

  5. Anderson RJ, Berl T, McDonald KM, Schrier RW. Prostaglandins: effects on blood pressure, renal blood flow, sodium and water excretion. Kidney Int. 1976;10:205–15.

    Article  PubMed  CAS  Google Scholar 

  6. Antonazzo P, Cetin I, Tarricone D, Lombardi F, Pardi G. Cardiac autonomic modulation in normal, high-risk, and in vitro fertilization pregnancies during the first trimester. Am J Obstet Gynecol. 2004;190:199–205.

    Article  PubMed  Google Scholar 

  7. Antzelevitch C, Shimizu W, Yan GX, Sicouri S. Cellular basis for QT dispersion. J Electrocardiol. 1998;30(30 Suppl):168–75.

    Article  PubMed  Google Scholar 

  8. August P, Lenz T, Ales KL, Druzin ML, Edersheim TG, Hutson JM, Muller FB, Laragh JH, Sealey JE. Longitudinal study of the renin-angiotensin-aldosterone system in hypertensive pregnant women: deviations related to the development of superimposed preeclampsia. Am J Obstet Gynecol. 1990;163:1612–21.

    Article  PubMed  CAS  Google Scholar 

  9. Aurigemma GP, Zile MR, Gaasch WH. Contractile behavior of the left ventricle in diastolic heart failure: with emphasis on regional systolic function. Circulation. 2006;113:296–304.

    Article  PubMed  Google Scholar 

  10. Badke FR, Covell JW. Early changes in left ventricular regional dimensions and function during chronic volume overloading in the conscious dog. Circ Res. 1979;45:420–8.

    Article  PubMed  CAS  Google Scholar 

  11. Balasch J, Arroyo V, Carmona F, Llach J, Jimenez W, Pare JC, Vanrell JA. Severe ovarian hyperstimulation syndrome: role of peripheral vasodilation. Fertil Steril. 1991;56:1077–83.

    Article  PubMed  CAS  Google Scholar 

  12. Bamfo JE, Kametas NA, Nicolaides KH, Chambers JB. Maternal left ventricular diastolic and systolic long-axis function during normal pregnancy. Eur J Echocardiogr. 2007;8:360–8.

    Article  PubMed  Google Scholar 

  13. Barron WM, Mujais SK, Zinaman M, Bravo EL, Lindheimer MD. Plasma catecholamine responses to physiologic stimuli in normal human pregnancy. Am J Obstet Gynecol. 1986;154:80–4.

    Article  PubMed  CAS  Google Scholar 

  14. Barwin BN, Roddie IC. Venous distensibility during pregnancy determined by graded venous congestion. Am J Obstet Gynecol. 1976;125:921–3.

    Article  PubMed  CAS  Google Scholar 

  15. Baumert M, Javorka M, Seeck A, Faber R, Sanders P, Voss A. Multiscale entropy and detrended fluctuation analysis of QT interval and heart rate variability during normal pregnancy. Comput Biol Med. 2012;42:347–52.

    Article  PubMed  Google Scholar 

  16. Benjamin N, Rymer J, Todd SD, Thom M, Ritter JM. Sensitivity to angiotensin II of forearm resistance vessels in pregnancy. Br J Clin Pharmacol. 1991;32:523–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bett GC. Hormones and sex differences: changes in cardiac electrophysiology with pregnancy. Clin Sci (Lond). 2016;130:747–59.

    Article  CAS  Google Scholar 

  18. Blake MJ, Martin A, Manktelow BN, Armstrong C, Halligan AW, Panerai RB, Potter JF. Changes in baroreceptor sensitivity for heart rate during normotensive pregnancy and the puerperium. Clin Sci (Lond). 2000;98:259–68.

    Article  CAS  Google Scholar 

  19. Bouthoorn SH, Gaillard R, Steegers EA, Hofman A, Jaddoe VW, van Lenthe FJ, Raat H. Ethnic differences in blood pressure and hypertensive complications during pregnancy: the generation R study. Hypertension. 2012;60:198–205.

    Article  PubMed  CAS  Google Scholar 

  20. Brewster LM, Clark JF, van Montfrans GA. Is greater tissue activity of creatine kinase the genetic factor increasing hypertension risk in black people of sub-Saharan African descent? J Hypertens. 2000;18:1537–44.

    Article  PubMed  CAS  Google Scholar 

  21. Brewster LM, Coronel CM, Sluiter W, Clark JF, van Montfrans GA. Ethnic differences in tissue creatine kinase activity: an observational study. PLoS One. 2012;7:e32471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Brewster LM, Mairuhu G, Bindraban NR, Koopmans RP, Clark JF, van Montfrans GA. Creatine kinase activity is associated with blood pressure. Circulation. 2006;114:2034–9.

    Article  PubMed  CAS  Google Scholar 

  23. Brewster LM, Taherzadeh Z, Volger S, Clark JF, Rolf T, Wolf H, Vanbavel E, van Montfrans GA. Ethnic differences in resistance artery contractility of normotensive pregnant women. Am J Physiol Heart Circ Physiol. 2010;299:H431–6.

    Article  PubMed  CAS  Google Scholar 

  24. Brewster LM, van Bree S, Reijneveld JC, Notermans NC, Verschuren WM, Clark JF, van Montfrans GA, de Visser M. Hypertension risk in idiopathic hyperCKemia. J Neurol. 2008;255:11–5.

    Article  PubMed  CAS  Google Scholar 

  25. Brooks VL, Kane CM, Van Winkle DM. Altered heart rate baroreflex during pregnancy: role of sympathetic and parasympathetic nervous systems. Am J Phys. 1997;273:R960–6.

    CAS  Google Scholar 

  26. Brooks VL, Keil LC. Changes in the baroreflex during pregnancy in conscious dogs: heart rate and hormonal responses. Endocrinology. 1994;135:1894–901.

    Article  PubMed  CAS  Google Scholar 

  27. Broughton Pipkin F, Morrison R, O'Brien PM. Prostacyclin attenuates both the pressor and adrenocortical response to angiotensin II in human pregnancy. Clin Sci (Lond). 1989;76:529–34.

    Article  CAS  Google Scholar 

  28. Bundgaard-Nielsen M, Wilson TE, Seifert T, Secher NH, Crandall CG. Effect of volume loading on the Frank-Starling relation during reductions in central blood volume in heat-stressed humans. J Physiol. 2010;588:3333–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Capeless EL, Clapp JF. Cardiovascular changes in early phase of pregnancy. Am J Obstet Gynecol. 1989;161:1449–53.

    Article  PubMed  CAS  Google Scholar 

  30. Carpenter RE, D'Silva LA, Emery SJ, Uzun O, Rassi D, Lewis MJ. Changes in heart rate variability and QT variability during the first trimester of pregnancy. Physiol Meas. 2015;36:531–45.

    Article  PubMed  CAS  Google Scholar 

  31. Cat Genova G, Veglio F, Rabbia F, Milan A, Grosso T, Chiandussi L. Baroreflex sensitivity in secondary hypertension. Clin Exp Hypertens. 2001;23:89–99.

    Article  PubMed  CAS  Google Scholar 

  32. Chapleau MW, Hajduczok G, Sharma RV, Wachtel RE, Cunningham JT, Sullivan MJ, Abboud FM. Mechanisms of baroreceptor activation. Clin Exp Hypertens. 1995;17:1–13.

    Article  PubMed  CAS  Google Scholar 

  33. Chapleau MW, Heesch CM, Abboud FM. Prevention or attenuation of baroreceptor resetting by pulsatility during elevated pressure. Hypertension. 1987;9:III137–41.

    Article  PubMed  CAS  Google Scholar 

  34. Chapman AB, Abraham WT, Zamudio S, Coffin C, Merouani A, Young D, Johnson A, Osorio F, Goldberg C, Moore LG, Dahms T, Schrier RW. Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int. 1998;54:2056–63.

    Article  PubMed  CAS  Google Scholar 

  35. Chapman AB, Zamudio S, Woodmansee W, Merouani A, Osorio F, Johnson A, Moore LG, Dahms T, Coffin C, Abraham WT, Schrier RW. Systemic and renal hemodynamic changes in the luteal phase of the menstrual cycle mimic early pregnancy. Am J Phys. 1997;273:F777–82.

    CAS  Google Scholar 

  36. Choi BR, Burton F, Salama G. Cytosolic Ca2+ triggers early afterdepolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome. J Physiol. 2002;543:615–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chu ZM, Beilin LJ. Mechanisms of vasodilatation in pregnancy: studies of the role of prostaglandins and nitric-oxide in changes of vascular reactivity in the in situ blood perfused mesentery of pregnant rats. Br J Pharmacol. 1993;109:322–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Clapp JF 3rd, Capeless E. Cardiovascular function before, during, and after the first and subsequent pregnancies. Am J Cardiol. 1997;80:1469–73.

    Article  PubMed  Google Scholar 

  39. Conrad KP. Emerging role of relaxin in the maternal adaptations to normal pregnancy: implications for preeclampsia. Semin Nephrol. 2011;31:15–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Conrad KP, Davison JM. The renal circulation in normal pregnancy and preeclampsia: is there a place for relaxin? Am J Physiol Renal Physiol. 2014;306:F1121–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Conrad KP, Joffe GM, Kruszyna H, Kruszyna R, Rochelle LG, Smith RP, Chavez JE, Mosher MD. Identification of increased nitric oxide biosynthesis during pregnancy in rats. FASEB J. 1993;7:566–71.

    Article  PubMed  CAS  Google Scholar 

  42. Curran-Everett D, Morris KG Jr, Moore LG. Regional circulatory contributions to increased systemic vascular conductance of pregnancy. Am J Phys. 1991;261:H1842–7.

    CAS  Google Scholar 

  43. de Haas S, Ghossein-Doha C, van Kuijk SM, van Drongelen J, Spaanderman ME. Physiological adaptation of maternal plasma volume during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;49:177–87.

    Article  PubMed  Google Scholar 

  44. Desai DK, Moodley J, Naidoo DP. Echocardiographic assessment of cardiovascular hemodynamics in normal pregnancy. Obstet Gynecol. 2004;104:20–9.

    Article  PubMed  Google Scholar 

  45. Dorup I, Skajaa K, Sorensen KE. Normal pregnancy is associated with enhanced endothelium-dependent flow-mediated vasodilation. Am J Phys. 1999;276:H821–5.

    Article  CAS  Google Scholar 

  46. Durr JA, Stamoutsos B, Lindheimer MD. Osmoregulation during pregnancy in the rat. Evidence for resetting of the threshold for vasopressin secretion during gestation J Clin Invest. 1981;68:337–46.

    PubMed  CAS  Google Scholar 

  47. Duvekot JJ, Cheriex EC, Pieters FA, Menheere PP, Peeters LH. Early pregnancy changes in hemodynamics and volume homeostasis are consecutive adjustments triggered by a primary fall in systemic vascular tone. Am J Obstet Gynecol. 1993;169:1382–92.

    Article  CAS  PubMed  Google Scholar 

  48. Eckberg DL, Sleight P. Human baroreflex in health and disease. New York Oxford: Oxford University Press; 1992.

    Google Scholar 

  49. Ekholm EM, Piha SJ, Erkkola RU, Antila KJ. Autonomic cardiovascular reflexes in pregnancy. A longitudinal study. Clin Auton Res. 1994;4:161–5.

    Article  PubMed  CAS  Google Scholar 

  50. El Khoury N, Mathieu S, Marger L, Ross J, El Gebeily G, Ethier N, Fiset C. Upregulation of the hyperpolarization-activated current increases pacemaker activity of the sinoatrial node and heart rate during pregnancy in mice. Circulation. 2013;127(20):2009.

    Article  PubMed  Google Scholar 

  51. Eneroth-Grimfors E, Westgren M, Ericson M, Ihrman-Sandahl C, Lindblad LE. Autonomic cardiovascular control in normal and pre-eclamptic pregnancy. Acta Obstet Gynecol Scand. 1994;73:680–4.

    Article  PubMed  CAS  Google Scholar 

  52. Estensen ME, Beitnes JO, Grindheim G, Aaberge L, Smiseth OA, Henriksen T, Aakhus S. Altered maternal left ventricular contractility and function during normal pregnancy. Ultrasound Obstet Gynecol. 2013;41:659–66.

    Article  PubMed  CAS  Google Scholar 

  53. Faber R, Baumert M, Stepan H, Wessel N, Voss A, Walther T. Baroreflex sensitivity, heart rate, and blood pressure variability in hypertensive pregnancy disorders. J Hum Hypertens. 2004;18:707–12.

    Article  PubMed  CAS  Google Scholar 

  54. Ferrero S, Colombo BM, Ragni N. Maternal arrhythmias during pregnancy. Arch Gynecol Obstet. 2004;269:244–53.

    Article  PubMed  Google Scholar 

  55. Fischer T, Schobel HP, Frank H, Andreae M, Schneider KT, Heusser K. Pregnancy-induced sympathetic overactivity: a precursor of preeclampsia. Eur J Clin Investig. 2004;34:443–8.

    Article  CAS  Google Scholar 

  56. Floras JS, Legault L, Morali GA, Hara K, Blendis LM. Increased sympathetic outflow in cirrhosis and ascites: direct evidence from intraneural recordings. Ann Intern Med. 1991;114:373–80.

    Article  PubMed  CAS  Google Scholar 

  57. Folkow B, Di Bona GF, Hjemdahl P, Toren PH, Wallin BG. Measurements of plasma norepinephrine concentrations in human primary hypertension. A word of caution on their applicability for assessing neurogenic contributions. Hypertension. 1983;5:399–403.

    Article  PubMed  CAS  Google Scholar 

  58. Fu Q, Levine BD. Autonomic circulatory control during pregnancy in humans. Semin Reprod Med. 2009;27:330–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Fu Q, Witkowski S, Levine BD. Vasoconstrictor reserve and sympathetic neural control of orthostasis. Circulation. 2004;110:2931–7.

    Article  PubMed  Google Scholar 

  60. Fujime M, Tomimatsu T, Okaue Y, Koyama S, Kanagawa T, Taniguchi T, Kimura T. Central aortic blood pressure and augmentation index during normal pregnancy. Hypertens Res. 2012;35:633–8.

    Article  PubMed  Google Scholar 

  61. Gaillard R, Steegers EA, Hofman A, Jaddoe VW. Associations of maternal obesity with blood pressure and the risks of gestational hypertensive disorders. The generation R study. J Hypertens. 2011;29:937–44.

    Article  PubMed  CAS  Google Scholar 

  62. Geva T, Mauer MB, Striker L, Kirshon B, Pivarnik JM. Effects of physiologic load of pregnancy on left ventricular contractility and remodeling. Am Heart J. 1997;133:53–9.

    Article  PubMed  CAS  Google Scholar 

  63. Gilligan DM, Badar DM, Panza JA, Quyyumi AA, Cannon RO 3rd. Effects of estrogen replacement therapy on peripheral vasomotor function in postmenopausal women. Am J Cardiol. 1995;75:264–8.

    Article  PubMed  CAS  Google Scholar 

  64. Gilson GJ, Samaan S, Crawford MH, Qualls CR, Curet LB. Changes in hemodynamics, ventricular remodeling, and ventricular contractility during normal pregnancy: a longitudinal study. Obstet Gynecol. 1997;89:957–62.

    Article  PubMed  CAS  Google Scholar 

  65. Goodlin RC. Venous reactivity and pregnancy abnormalities. Acta Obstet Gynecol Scand. 1986;65:345–8.

    Article  PubMed  CAS  Google Scholar 

  66. Gowda RM, Khan IA, Mehta NJ, Vasavada BC, Sacchi TJ. Cardiac arrhythmias in pregnancy: clinical and therapeutic considerations. Int J Cardiol. 2003;88:129–33.

    Article  PubMed  Google Scholar 

  67. Greenwood JP, Scott EM, Stoker JB, Walker JJ, Mary DA. Sympathetic neural mechanisms in normal and hypertensive pregnancy in humans. Circulation. 2001;104:2200–4.

    Article  PubMed  CAS  Google Scholar 

  68. Greenwood JP, Stoker JB, Walker JJ, Mary DA. Sympathetic nerve discharge in normal pregnancy and pregnancy-induced hypertension. J Hypertens. 1998;16:617–24.

    Article  PubMed  CAS  Google Scholar 

  69. Grindheim G, Estensen ME, Langesaeter E, Rosseland LA, Toska K. Changes in blood pressure during healthy pregnancy: a longitudinal cohort study. J Hypertens. 2012;30:342–50.

    Article  PubMed  CAS  Google Scholar 

  70. Hassager C, Riis BJ, Strom V, Guyene TT, Christiansen C. The long-term effect of oral and percutaneous estradiol on plasma renin substrate and blood pressure. Circulation. 1987;76:753–8.

    Article  PubMed  CAS  Google Scholar 

  71. Haynes WG, Noon JP, Walker BR, Webb DJ. Inhibition of nitric oxide synthesis increases blood pressure in healthy humans. J Hypertens. 1993;11:1375–80.

    Article  PubMed  CAS  Google Scholar 

  72. He XR, Wang W, Crofton JT, Share L. Effects of 17beta-estradiol on the baroreflex control of sympathetic activity in conscious ovariectomized rats. Am J Phys. 1999;277:R493–8.

    CAS  Google Scholar 

  73. Hissen SL, El Sayed K, Macefield VG, Brown R, Taylor CE. Muscle sympathetic nerve activity peaks in the first trimester in healthy pregnancy: a longitudinal case study. Clin Auton Res. 2017;27:401–6.

    Article  PubMed  Google Scholar 

  74. Hunter S, Robson SC. Adaptation of the maternal heart in pregnancy. Br Heart J. 1992;68:540–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hytten FE, Paintin DB. Increase in plasma volume during normal pregnancy. J Obstet Gynaecol Br Emp. 1963;70:402–7.

    Article  PubMed  CAS  Google Scholar 

  76. Iyengar MR. Creatine kinase as an intracellular regulator. J Muscle Res Cell Motil. 1984;5:527–34.

    Article  PubMed  CAS  Google Scholar 

  77. Jarvis SS, Shibata S, Bivens TB, Okada Y, Casey BM, Levine BD, Fu Q. Sympathetic activation during early pregnancy in humans. J Physiol. 2012;590:3535–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Jespersen CM, Arnung K, Hagen C, Hilden T, Nielsen F, Nielsen MD, Giese J. Effects of natural oestrogen therapy on blood pressure and renin-angiotensin system in normotensive and hypertensive menopausal women. J Hypertens. 1983;1(4):361.

    Article  PubMed  CAS  Google Scholar 

  79. Johnson JM, Rowell LB, Niederberger M, Eisman MM. Human splanchnic and forearm vasoconstrictor responses to reductions of right atrial and aortic pressures. Circ Res. 1974;34:515–24.

    Article  PubMed  CAS  Google Scholar 

  80. Kametas NA, McAuliffe F, Hancock J, Chambers J, Nicolaides KH. Maternal left ventricular mass and diastolic function during pregnancy. Ultrasound Obstet Gynecol. 2001;18:460–6.

    Article  PubMed  CAS  Google Scholar 

  81. Kamiya A, Kawada T, Mizuno M, Miyamoto T, Uemura K, Seki K, Shimizu S, Sugimachi M. Baroreflex increases correlation and coherence of muscle sympathetic nerve activity (SNA) with renal and cardiac SNAs. J Physiol Sci. 2006;56:325–33.

    Article  PubMed  Google Scholar 

  82. Kamiya A, Kawada T, Yamamoto K, Michikami D, Ariumi H, Miyamoto T, Shimizu S, Uemura K, Aiba T, Sunagawa K, Sugimachi M. Dynamic and static baroreflex control of muscle sympathetic nerve activity (SNA) parallels that of renal and cardiac SNA during physiological change in pressure. Am J Physiol Heart Circ Physiol. 2005;289:H2641–8.

    Article  PubMed  CAS  Google Scholar 

  83. Kanai A, Salama G. Optical mapping reveals that repolarization spreads anisotropically and is guided by fiber orientation in Guinea pig hearts. Circ Res. 1995;77:784–802.

    Article  PubMed  CAS  Google Scholar 

  84. Katz R, Karliner JS, Resnik R. Effects of a natural volume overload state (pregnancy) on left ventricular performance in normal human subjects. Circulation. 1978;58:434–41.

    Article  PubMed  CAS  Google Scholar 

  85. Khalil A, Jauniaux E, Cooper D, Harrington K. Pulse wave analysis in normal pregnancy: a prospective longitudinal study. PLoS One. 2009;4:e6134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Khalil RA, Crews JK, Novak J, Kassab S, Granger JP. Enhanced vascular reactivity during inhibition of nitric oxide synthesis in pregnant rats. Hypertension. 1998;31:1065–9.

    Article  PubMed  CAS  Google Scholar 

  87. Knuist M, Bonsel GJ, Zondervan HA, Treffers PE. Risk factors for preeclampsia in nulliparous women in distinct ethnic groups: a prospective cohort study. Obstet Gynecol. 1998;92:174–8.

    PubMed  CAS  Google Scholar 

  88. Kuo CD, Chen GY, Yang MJ, Lo HM, Tsai YS. Biphasic changes in autonomic nervous activity during pregnancy. Br J Anaesth. 2000;84:323–9.

    Article  PubMed  CAS  Google Scholar 

  89. Lafleur L, Mitchell GF. Differences in the immunological activities of antibody-secreting cell precursors in mouse spleen selected on the basis of antigen-binding capacity. Eur J Immunol. 1975;5:648–52.

    Article  PubMed  CAS  Google Scholar 

  90. Lechmanova M, Kittnar O, Mlcek M, Slavicek J, Dohnalova A, Havranek S, Kolarik J, Parizek AQT. Dispersion and T-loop morphology in late pregnancy and after delivery. Physiol Res. 2002;51:121–9.

    PubMed  CAS  Google Scholar 

  91. Leduc L, Wasserstrum N, Spillman T, Cotton DB. Baroreflex function in normal pregnancy. Am J Obstet Gynecol. 1991;165:886–90.

    Article  PubMed  CAS  Google Scholar 

  92. Liu LX, Arany Z. Maternal cardiac metabolism in pregnancy. Cardiovasc Res. 2014;101:545–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lucini D, Strappazzon P, Vecchia LD, Maggioni C, Pagani M. Cardiac autonomic adjustments to normal human pregnancy: insight from spectral analysis of R-R interval and systolic arterial pressure variability. J Hypertens. 1999;17:1899–904.

    Article  PubMed  CAS  Google Scholar 

  94. Lusiani L, Ronsisvalle G, Bonanome A, Visona A, Castellani V, Macchia C, Pagnan A. Echocardiographic evaluation of the dimensions and systolic properties of the left ventricle in freshman athletes during physical training. Eur Heart J. 1986;7:196–203.

    Article  PubMed  CAS  Google Scholar 

  95. Ma X, Sigmund CD, Hingtgen SD, Tian X, Davisson RL, Abboud FM, Chapleau MW. Ganglionic action of angiotensin contributes to sympathetic activity in renin-angiotensinogen transgenic mice. Hypertension. 2004;43:312–6.

    Article  PubMed  CAS  Google Scholar 

  96. Mabie WC, DiSessa TG, Crocker LG, Sibai BM, Arheart KLA. A longitudinal study of cardiac output in normal human pregnancy. Am J Obstet Gynecol. 1994;170:849–56.

    Google Scholar 

  97. Magness RR, Cox K, Rosenfeld CR, Gant NF. Angiotensin II metabolic clearance rate and pressor responses in nonpregnant and pregnant women. Am J Obstet Gynecol. 1994;171:668–79.

    Article  PubMed  CAS  Google Scholar 

  98. Magriples U, Boynton MH, Kershaw TS, Duffany KO. Rising SS, Ickovics JR. Blood pressure changes during pregnancy: impact of race, body mass index, and weight gain. Am J Perinatol. 2013;30:415–24.

    Google Scholar 

  99. Mahendru AA, Everett TR, Wilkinson IB, Lees CC, McEniery CM. A longitudinal study of maternal cardiovascular function from preconception to the postpartum period. J Hypertens. 2014;32:849–56.

    Article  PubMed  CAS  Google Scholar 

  100. Mahendru AA, Foo FL, McEniery CM, Everett TR, Wilkinson IB, Lees CC. Change in maternal cardiac output from preconception to mid-pregnancy is associated with birth weight in healthy pregnancies. Ultrasound Obstet Gynecol. 2017;49:78–84.

    Article  PubMed  CAS  Google Scholar 

  101. Marciniak A, Claus P, Sutherland GR, Marciniak M, Karu T, Baltabaeva A, Merli E, Bijnens B, Jahangiri M. Changes in systolic left ventricular function in isolated mitral regurgitation. A strain rate imaging study. Eur Heart J. 2007;28:2627–36.

    Article  PubMed  Google Scholar 

  102. Martin A, Brown MA, Bucci J, Whitworth JA. Measuring venous capacitance and blood flow in pregnancy. Aust N Z J Obstet Gynaecol. 1997;37:335–9.

    Article  PubMed  CAS  Google Scholar 

  103. Mersich B, Rigo J Jr, Besenyei C, Lenard Z, Studinger P, Kollai M. Opposite changes in carotid versus aortic stiffness during healthy human pregnancy. Clin Sci (Lond). 2005;109:103–7.

    Article  Google Scholar 

  104. Mesa A, Jessurun C, Hernandez A, Adam K, Brown D, Vaughn WK, Wilansky S. Left ventricular diastolic function in normal human pregnancy. Circulation. 1999;99:511–7.

    Article  PubMed  CAS  Google Scholar 

  105. Moertl MG, Ulrich D, Pickel KI, Klaritsch P, Schaffer M, Flotzinger D, Alkan I, Lang U, Schlembach D. Changes in haemodynamic and autonomous nervous system parameters measured non-invasively throughout normal pregnancy. Eur J Obstet Gynecol Reprod Biol. 2009;144(Suppl 1):S179–83.

    Article  PubMed  Google Scholar 

  106. Molino P, Veglio F, Genova GC, Melchio R, Benedetto C, Chiarolini L, Rabbia F, Grosso T, Mulatero P, Chiandussi L. Baroreflex control of heart rate is impaired in pre-eclampsia. J Hum Hypertens. 1999;13:179–83.

    Article  PubMed  CAS  Google Scholar 

  107. Mone SM, Sanders SP, Colan SD. Control mechanisms for physiological hypertrophy of pregnancy. Circulation. 1996;94:667–72.

    Article  PubMed  CAS  Google Scholar 

  108. Nakagawa M, Katou S, Ichinose M, Nobe S, Yonemochi H, Miyakawa I, Saikawa T. Characteristics of new-onset ventricular arrhythmias in pregnancy. J Electrocardiol. 2004;37:47–53.

    Article  PubMed  Google Scholar 

  109. Nama V, Antonios TF, Onwude J, Manyonda IT. Mid-trimester blood pressure drop in normal pregnancy: myth or reality? J Hypertens. 2011;29:763–8.

    Article  PubMed  CAS  Google Scholar 

  110. Nisell H, Hjemdahl P, Linde B. Cardiovascular responses to circulating catecholamines in normal pregnancy and in pregnancy-induced hypertension. Clin Physiol. 1985;5:479–93.

    Article  PubMed  CAS  Google Scholar 

  111. Novak J, Parry LJ, Matthews JE, Kerchner LJ, Indovina K, Hanley-Yanez K, Doty KD, Debrah DO, Shroff SG, Conrad KP. Evidence for local relaxin ligand-receptor expression and function in arteries. FASEB J. 2006;20:2352–62.

    Article  PubMed  CAS  Google Scholar 

  112. Okada Y, Best SA, Jarvis SS, Shibata S, Parker RS, Casey BM, Levine BD, Fu Q. Asian women have attenuated sympathetic activation but enhanced renal-adrenal responses during pregnancy compared to Caucasian women. J Physiol. 2015;593:1159–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Paller MS. Mechanism of decreased pressor responsiveness to ANG II, NE, and vasopressin in pregnant rats. Am J Phys. 1984;247:H100–8.

    CAS  Google Scholar 

  114. Pandey AK, Banerjee AK, Das A, Bhawani G, Kumar A, Majumadar B, Bhattacharya AK. Evaluation of maternal myocardial performance during normal pregnancy and post partum. Indian Heart J. 2010;62:64–7.

    PubMed  Google Scholar 

  115. Paulus WJ, Shah AMNO. cardiac diastolic function. Cardiovasc Res. 1999;43:595–606.

    Article  PubMed  CAS  Google Scholar 

  116. Phippard AF, Horvath JS, Glynn EM, Garner MG, Fletcher PJ, Duggin GG, Tiller DJ. Circulatory adaptation to pregnancy--serial studies of haemodynamics, blood volume, renin and aldosterone in the baboon (Papio hamadryas). J Hypertens. 1986;4:773–9.

    Article  PubMed  CAS  Google Scholar 

  117. Poppas A, Shroff SG, Korcarz CE, Hibbard JU, Berger DS, Lindheimer MD, Lang RM. Serial assessment of the cardiovascular system in normal pregnancy. Role of arterial compliance and pulsatile arterial load. Circulation. 1997;95:2407–15.

    Article  PubMed  CAS  Google Scholar 

  118. Quesnell RR, Brooks VL. Alterations in the baroreflex occur late in pregnancy in conscious rabbits. Am J Obstet Gynecol. 1997;176:692–4.

    Article  PubMed  CAS  Google Scholar 

  119. Rang S, Wolf H, van Montfrans GA, Karemaker JM. Serial assessment of cardiovascular control shows early signs of developing pre-eclampsia. J Hypertens. 2004;22:369–76.

    Article  PubMed  CAS  Google Scholar 

  120. Robson SC, Hunter S, Boys RJ, Dunlop W. Hemodynamic changes during twin pregnancy. A Doppler and M-mode echocardiographic study. Am J Obstet Gynecol. 1989a;161:1273–8.

    Article  PubMed  CAS  Google Scholar 

  121. Robson SC, Hunter S, Boys RJ, Dunlop W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Phys. 1989b;256:H1060–5.

    CAS  Google Scholar 

  122. Robson SC, Hunter S, Dunlop W. Left atrial dimension during early puerperium. Lancet. 1987;2:111–2.

    Article  PubMed  CAS  Google Scholar 

  123. Roman MJ, Saba PS, Pini R, Spitzer M, Pickering TG, Rosen S, Alderman MH, Devereux RB. Parallel cardiac and vascular adaptation in hypertension. Circulation. 1992;86:1909–18.

    Article  PubMed  CAS  Google Scholar 

  124. Sakai K, Imaizumi T, Maeda H, Nagata H, Tsukimori K, Takeshita A, Nakano H. Venous distensibility during pregnancy. Comparisons between normal pregnancy and preeclampsia. Hypertension. 1994;24:461–6.

    Article  PubMed  CAS  Google Scholar 

  125. Sanghavi M, Rutherford JD. Cardiovascular physiology of pregnancy. Circulation. 2014;130:1003–8.

    Article  PubMed  Google Scholar 

  126. Savu O, Jurcut R, Giusca S, van Mieghem T, Gussi I, Popescu BA, Ginghina C, Rademakers F, Deprest J, Voigt JU. Morphological and functional adaptation of the maternal heart during pregnancy. Circ Cardiovasc Imaging. 2012;5:289–97.

    Article  PubMed  Google Scholar 

  127. Savvidou MD, Kametas NA, Donald AE, Nicolaides KH. Non-invasive assessment of endothelial function in normal pregnancy. Ultrasound Obstet Gynecol. 2000;15:502–7.

    Article  PubMed  CAS  Google Scholar 

  128. Savvidou MD, Vallance PJ, Nicolaides KH, Hingorani AD. Endothelial nitric oxide synthase gene polymorphism and maternal vascular adaptation to pregnancy. Hypertension. 2001;38:1289–93.

    Article  PubMed  CAS  Google Scholar 

  129. Schobel HP, Fischer T, Heuszer K, Geiger H, Schmieder RE. Preeclampsia -- a state of sympathetic overactivity. N Engl J Med. 1996;335:1480–5.

    Article  CAS  PubMed  Google Scholar 

  130. Sealey JE, Itskovitz-Eldor J, Rubattu S, James GD, August P, Thaler I, Levron J, Laragh JH. Estradiol- and progesterone-related increases in the renin-aldosterone system: studies during ovarian stimulation and early pregnancy. J Clin Endocrinol Metab. 1994;79:258–64.

    PubMed  CAS  Google Scholar 

  131. Seely EW, Walsh BW, Gerhard MD, Williams GH. Estradiol with or without progesterone and ambulatory blood pressure in postmenopausal women. Hypertension. 1999;33:1190–4.

    Article  PubMed  CAS  Google Scholar 

  132. Shaamash AH, Elsnosy ED, Makhlouf AM, Zakhari MM, Ibrahim OA, EL-d HM. Maternal and fetal serum nitric oxide (NO) concentrations in normal pregnancy, pre-eclampsia and eclampsia. Int J Gynaecol Obstet. 2000;68:207–14.

    Article  PubMed  CAS  Google Scholar 

  133. Sierra-Laguado J, Garcia RG, Lopez-Jaramillo P. Flow-mediated dilatation of the brachial artery in pregnancy. Int J Gynaecol Obstet. 2006;93(1):60.

    Article  PubMed  CAS  Google Scholar 

  134. Silver HM, Tahvanainen KU, Kuusela TA, Eckberg DL. Comparison of vagal baroreflex function in nonpregnant women and in women with normal pregnancy, preeclampsia, or gestational hypertension. Am J Obstet Gynecol. 2001;184:1189–95.

    Article  PubMed  CAS  Google Scholar 

  135. Simmons LA, Gillin AG, Jeremy RW. Structural and functional changes in left ventricle during normotensive and preeclamptic pregnancy. Am J Physiol Heart Circ Physiol. 2002;283:H1627–33.

    Article  PubMed  CAS  Google Scholar 

  136. Simonian SX, Herbison AE. Differential expression of estrogen receptor and neuropeptide Y by brainstem A1 and A2 noradrenaline neurons. Neuroscience. 1997;76:517–29.

    Article  PubMed  CAS  Google Scholar 

  137. Sims EA, Krantz KE. Serial studies of renal function during pregnancy and the puerperium in normal women. J Clin Invest. 1958;37:1764–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Slangen BF, Out IC, Janssen BJ, Peeters LL. Blood pressure and heart rate variability in early pregnancy in rats. Am J Phys. 1997;273:H1794–9.

    CAS  Google Scholar 

  139. Spaanderman ME, Willekes C, Hoeks AP, Ekhart TH, Peeters LL. The effect of pregnancy on the compliance of large arteries and veins in healthy parous control subjects and women with a history of preeclampsia. Am J Obstet Gynecol. 2000;183:1278–86.

    Article  PubMed  CAS  Google Scholar 

  140. Stainer K, Morrison R, Pickles C, Cowley AJ. Abnormalities of peripheral venous tone in women with pregnancy-induced hypertension. Clin Sci (Lond). 1986;70:155–7.

    Article  CAS  Google Scholar 

  141. Stein PK, Hagley MT, Cole PL, Domitrovich PP, Kleiger RE, Rottman JN. Changes in 24-hour heart rate variability during normal pregnancy. Am J Obstet Gynecol. 1999;180:978–85.

    Article  PubMed  CAS  Google Scholar 

  142. Stennett AK, Qiao X, Falone AE, Koledova VV, Khalil RA. Increased vascular angiotensin type 2 receptor expression and NOS-mediated mechanisms of vascular relaxation in pregnant rats. Am J Physiol Heart Circ Physiol. 2009;296:H745–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Stewart RD, Nelson DB, Matulevicius SA, Morgan JL, McIntire DD, Drazner MH, Cunningham FG. Cardiac magnetic resonance imaging to assess the impact of maternal habitus on cardiac remodeling during pregnancy. Am J Obstet Gynecol. 2016;214:640 e641-6.

    Article  Google Scholar 

  144. Sundlof G, Wallin BG. Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J Physiol. 1978;274:621–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Szlachter BN, Quagliarello J, Jewelewicz R, Osathanondh R, Spellacy WN, Weiss G. Relaxin in normal and pathogenic pregnancies. Obstet Gynecol. 1982;59:167–70.

    PubMed  CAS  Google Scholar 

  146. Tanindi A, Akgun N, Pabuccu EG, Gursoy AY, Yuce E, Tore HF, Duvan CI. Electrocardiographic P-wave duration, QT interval, T peak to end interval and Tp-e/QT ratio in pregnancy with respect to trimesters. Ann Noninvasive Electrocardiol. 2016;21:169–74.

    Article  PubMed  Google Scholar 

  147. Tkachenko O, Shchekochikhin D, Schrier RW. Hormones and hemodynamics in pregnancy. Int J Endocrinol Metab. 2014;12:e14098.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Tulchinsky D, Korenman SG. The plasma estradiol as an index of fetoplacental function. J Clin Invest. 1971;50(7):1490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Tunbridge RD, Donnai P. Plasma noradrenaline in normal pregnancy and in hypertension of late pregnancy. Br J Obstet Gynaecol. 1981;88:105–8.

    Article  PubMed  CAS  Google Scholar 

  150. Umar S, Nadadur R, Iorga A, Amjedi M, Matori H, Eghbali M. Cardiac structural and hemodynamic changes associated with physiological heart hypertrophy of pregnancy are reversed postpartum. J Appl Physiol (1985). 2012;113:1253–9.

    Article  PubMed Central  Google Scholar 

  151. Usselman CW, Skow RJ, Matenchuk BA, Chari RS, Julian CG, Stickland MK, Davenport MH, Steinback CD. Sympathetic baroreflex gain in normotensive pregnant women. J Appl Physiol (1985). 2015;119:468–74.

    Article  Google Scholar 

  152. Valensise H, Novelli GP, Vasapollo B, Borzi M, Arduini D, Galante A, Romanini C. Maternal cardiac systolic and diastolic function: relationship with uteroplacental resistances. A Doppler and echocardiographic longitudinal study. Ultrasound Obstet Gynecol. 2000;15:487–97.

    Article  PubMed  CAS  Google Scholar 

  153. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989;2:997–1000.

    Article  PubMed  CAS  Google Scholar 

  154. Vallbo AB, Hagbarth KE, Torebjork HE, Wallin BG. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979;59:919–57.

    Article  PubMed  CAS  Google Scholar 

  155. van Oppen AC, Stigter RH, Bruinse HW. Cardiac output in normal pregnancy: a critical review. Obstet Gynecol. 1996;87:310–8.

    Article  PubMed  Google Scholar 

  156. Vinayagam D, Thilaganathan B, Stirrup O, Mantovani E, Khalil A. Maternal hemodynamics in normal pregnancy: reference ranges and role of maternal characteristics. Ultrasound Obstet Gynecol. 2018;51:665–71.

    Article  CAS  Google Scholar 

  157. Visontai Z, Lenard Z, Studinger P, Rigo J Jr, Kollai M. Impaired baroreflex function during pregnancy is associated with stiffening of the carotid artery. Ultrasound Obstet Gynecol. 2002;20:364–9.

    Article  PubMed  CAS  Google Scholar 

  158. Voss A, Malberg H, Schumann A, Wessel N, Walther T, Stepan H, Faber R. Baroreflex sensitivity, heart rate, and blood pressure variability in normal pregnancy. Am J Hypertens. 2000;13:1218–25.

    Article  PubMed  CAS  Google Scholar 

  159. Wallin BG, Delius W, Sundlof G. Human muscle nerve sympathetic activity in cardiac arrhythmias. Scand J Clin Lab Invest. 1974;34:293–300.

    Article  PubMed  CAS  Google Scholar 

  160. Wallin BG, Fagius J. Peripheral sympathetic neural activity in conscious humans. Annu Rev Physiol. 1988;50:565–76.

    Article  PubMed  CAS  Google Scholar 

  161. Walther T, Wessel N, Baumert M, Stepan H, Voss A, Faber R. Longitudinal analysis of heart rate variability in chronic hypertensive pregnancy. Hypertens Res. 2005;28:113–8.

    Article  PubMed  Google Scholar 

  162. Wasserstrum N, Kirshon B, Rossavik IK, Willis RS, Moise KJ Jr, Cotton DB. Implications of sino-aortic baroreceptor reflex dysfunction in severe preeclampsia. Obstet Gynecol. 1989;74:34–9.

    PubMed  CAS  Google Scholar 

  163. Weiner CP, Lizasoain I, Baylis SA, Knowles RG, Charles IG, Moncada S. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Natl Acad Sci U S A. 1994;91:5212–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Williams DJ, Vallance PJ, Neild GH, Spencer JA, Imms FJ. Nitric oxide-mediated vasodilation in human pregnancy. Am J Phys. 1997;272:H748–52.

    CAS  Google Scholar 

  165. Williams JK, Adams MR, Herrington DM, Clarkson TB. Short-term administration of estrogen and vascular responses of atherosclerotic coronary arteries. J Am Coll Cardiol. 1992;20:452–7.

    Article  PubMed  CAS  Google Scholar 

  166. Wilson M, Morganti AA, Zervoudakis I, Letcher RL, Romney BM, Von Oeyon P, Papera S, Sealey JE, Laragh JH. Blood pressure, the renin-aldosterone system and sex steroids throughout normal pregnancy. Am J Med. 1980;68:97–104.

    Article  PubMed  CAS  Google Scholar 

  167. Winkleby MA, Kraemer HC, Ahn DK, Varady AN. Ethnic and socioeconomic differences in cardiovascular disease risk factors: findings for women from the Third National Health and Nutrition Examination Survey, 1988-1994. JAMA. 1998;280:356–62.

    Article  PubMed  CAS  Google Scholar 

  168. Yang CC, Chao TC, Kuo TB, Yin CS, Chen HI. Preeclamptic pregnancy is associated with increased sympathetic and decreased parasympathetic control of HR. Am J Physiol Heart Circ Physiol. 2000;278:H1269–73.

    Article  PubMed  CAS  Google Scholar 

  169. Zentner D, du Plessis M, Brennecke S, Wong J, Grigg L, Harrap SB. Deterioration in cardiac systolic and diastolic function late in normal human pregnancy. Clin Sci (Lond). 2009;116:599–606.

    Article  Google Scholar 

  170. Zuspan FP. Catecholamines. Their role in pregnancy and the development of pregnancy-induced hypertension. J Reprod Med. 1979;23:143–50.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Satyam Sarma for his constructive comments and suggestions on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, Q. (2018). Hemodynamic and Electrocardiographic Aspects of Uncomplicated Singleton Pregnancy. In: Kerkhof, P., Miller, V. (eds) Sex-Specific Analysis of Cardiovascular Function. Advances in Experimental Medicine and Biology, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-319-77932-4_26

Download citation

Publish with us

Policies and ethics