Skip to main content

Gold Nanofilm Redox Electrocatalysis for Oxygen Reduction at Soft Interfaces

  • Chapter
  • First Online:
Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces

Part of the book series: Springer Theses ((Springer Theses))

  • 418 Accesses

Abstract

The interfacial reduction of oxygen by a lipophilic electron donor, decamethylferrocene, dissolved in α,α,α-trifluorotoluene was catalyzed at a gold nanoparticle nanofilm modified water–oil interface. A recently developed microinjection technique was utilized to modify the interface reproducibly with the mirror-like gold nanoparticle nanofilm, while the oxidized electron donor species and the reduction product, hydrogen peroxide, were detected by ion transfer voltammetry and UV/vis spectroscopy, respectively. Metallization of the soft interface allowed the interfacial oxygen reduction reaction to proceed via an alternative mechanism with enhanced kinetics and at a significantly lower overpotential in comparison to a bare soft interface. Weaker lipophilic reductants, such as ferrocene, were capable of charging the interfacial gold nanoparticle nanofilm but did not have sufficient thermodynamic driving force to significantly elicit interfacial oxygen reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su, B., Hatay, I., Li, F., Partovi-Nia, R., Méndez, M.A., Samec, Z., Ersoz, M., Girault, H.H.: Oxygen reduction by decamethylferrocene at liquid/liquid interfaces catalyzed by dodecylaniline. J. Electroanal. Chem. 639, 102–108 (2010)

    Article  CAS  Google Scholar 

  2. Olaya, A.A.J., Ge, P.-Y., Gonthier, J.F., Pechy, P., Corminboeuf, C., Girault, H.H.: Four-electron oxygen reduction by tetrathiafulvalene. J. Am. Chem. Soc. 133, 12115–12123 (2011)

    Article  CAS  Google Scholar 

  3. Deng, H., Peljo, P., Cortés-Salazar, F., Ge, P., Kontturi, K., Girault, H.H.: Oxygen and hydrogen peroxide reduction by 1,2-diferrocenylethane at a liquid/liquid interface. J. Electroanal. Chem. 681, 16–23 (2012)

    Article  CAS  Google Scholar 

  4. Peljo, P., Murtomäki, L., Kallio, T., Xu, H.-J., Meyer, M., Gros, C.P., Barbe, J.-M., Girault, H.H., Laasonen, K., Kontturi, K.: Biomimetic oxygen reduction by cofacial porphyrins at a liquid-liquid interface. J. Am. Chem. Soc. 134, 5974–5984 (2012)

    Article  CAS  Google Scholar 

  5. Gründer, Y., Fabian, M.D., Booth, S.G., Plana, D., Fermín, D.J., Hill, P.I., Dryfe, R.A.W.: Solids at the liquid–liquid interface: electrocatalysis with pre-formed nanoparticles. Electrochim. Acta 110, 809–815 (2013)

    Article  Google Scholar 

  6. Jedraszko, J., Nogala, W., Adamiak, W., Rozniecka, E., Lubarska-Radziejewska, I., Girault, H.H., Opallo, M.: Hydrogen peroxide generation at liquid|liquid interface under conditions unfavorable for proton transfer from aqueous to organic phase. J. Phys. Chem. C 117, 20681–20688 (2013)

    Article  CAS  Google Scholar 

  7. Liu, X., Wu, S., Su, B.: Oxygen reduction with tetrathiafulvalene at liquid/liquid interfaces catalyzed by 5,10,15,20-tetraphenylporphyrin. J. Electroanal. Chem. 709, 26–30 (2013)

    Article  CAS  Google Scholar 

  8. Adamiak, W., Jedraszko, J., Krysiak, O., Nogala, W., Hidalgo-Acosta, J.C., Girault, H.H., Opallo, M.: Hydrogen and hydrogen peroxide formation in trifluorotoluene-water biphasic systems. J. Phys. Chem. C 118, 23154–23161 (2014)

    Article  CAS  Google Scholar 

  9. Deng, H., Jane Stockmann, T., Peljo, P., Opallo, M., Girault, H.H.: Electrochemical oxygen reduction at soft interfaces catalyzed by the transfer of hydrated lithium cations. J. Electroanal. Chem. 731, 28–35 (2014)

    Article  CAS  Google Scholar 

  10. Rastgar, S., Deng, H., Cortés-Salazar, F., Scanlon, M.D., Pribil, M., Amstutz, V., Karyakin, A.A., Shahrokhian, S., Girault, H.H.: Oxygen reduction at soft interfaces catalyzed by in situ-generated reduced graphene oxide. ChemElectroChem 1, 59–63 (2014)

    Article  Google Scholar 

  11. Jane Stockmann, T., Deng, H., Peljo, P., Kontturi, K., Opallo, M., Girault, H.H.: Mechanism of oxygen reduction by metallocenes near liquid|liquid interfaces. J. Electroanal. Chem. 729, 43–52 (2014)

    Article  CAS  Google Scholar 

  12. Hatay, I., Su, B., Li, F., Partovi-Nia, R., Vrubel, H., Hu, X., Ersoz, M., Girault, H.H.: Hydrogen evolution at liquid-liquid interfaces. Angew. Chemie 48, 5139–5142 (2009)

    Article  CAS  Google Scholar 

  13. Hatay, I., Ge, P.Y., Vrubel, H., Hu, X., Girault, H.H.: Hydrogen evolution at polarised liquid/liquid interfaces catalyzed by molybdenum disulfide. Energy Environ. Sci. 4, 4246 (2011)

    Article  CAS  Google Scholar 

  14. Nieminen, J.J., Hatay, I., Ge, P.-Y.P., Méndez, M.A., Murtomäki, L., Girault, H.H.: Hydrogen evolution catalyzed by electrodeposited nanoparticles at the liquid/liquid interface. Chem. Commun. 47, 5548–5550 (2011)

    Article  CAS  Google Scholar 

  15. Ge, P., Scanlon, M.D., Peljo, P., Bian, X., Vubrel, H., O’Neill, A., Coleman, J.N., Cantoni, M., Hu, X., Kontturi, K., et al.: Hydrogen evolution across nano-schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems. Chem. Commun. 48, 6484–6486 (2012)

    Article  CAS  Google Scholar 

  16. Bian, X., Scanlon, M.D., Wang, S., Liao, L., Tang, Y., Liu, B., Girault, H.H.: Floating conductive catalytic nano-rafts at soft interfaces for hydrogen evolution. Chem. Sci. 4, 3432 (2013)

    Article  CAS  Google Scholar 

  17. Scanlon, M.D., Bian, X., Vrubel, H., Amstutz, V., Schenk, K., Hu, X., Liu, B., Girault, H.H.: Low-cost industrially available molybdenum boride and carbide as “platinum-like” catalysts for the hydrogen evolution reaction in biphasic liquid systems. Phys. Chem. Chem. Phys. 15, 2847–2857 (2013)

    Article  CAS  Google Scholar 

  18. Ge, P., Olaya, A.J., Scanlon, M.D., Hatay Patir, I., Vrubel, H., Girault, H.H.: Photoinduced biphasic hydrogen evolution: decamethylosmocene as a light-driven electron donor. ChemPhysChem 14, 2308–2316 (2013)

    Article  CAS  Google Scholar 

  19. Jedraszko, J., Nogala, W., Adamiak, W., Girault, H.H., Opallo, M.: Scanning electrochemical microscopy determination of hydrogen flux at liquid|liquid interface with potentiometric probe. Electrochem. Commun. 43, 22–24 (2014)

    Article  CAS  Google Scholar 

  20. Aslan, E., Patir, I.H., Ersoz, M.: Cu nanoparticles electrodeposited at liquid-liquid interfaces: a highly efficient catalyst for the hydrogen evolution reaction. Chem. A Eur. J. 21, 4585–4589 (2015)

    Article  CAS  Google Scholar 

  21. Rodgers, A.N.J., Booth, S.G., Dryfe, R.A.W.: Particle deposition and catalysis at the interface between two immiscible electrolyte solutions (ITIES): a mini-review. Electrochem. Commun. 47, 17–20 (2014)

    Article  CAS  Google Scholar 

  22. Hatay Patir, I.: Oxygen reduction catalyzed by aniline derivatives at liquid/liquid interfaces. J. Electroanal. Chem. 685, 28–32 (2012)

    Article  CAS  Google Scholar 

  23. Li, Y., Wu, S., Su, B.: Proton-coupled O2 reduction reaction catalysed by cobalt phthalocyanine at liquid/liquid interfaces. Chemistry 18, 7372–7376 (2012)

    Article  CAS  Google Scholar 

  24. Olaya, A.A.J., Schaming, D., Brevet, P.-F., Nagatani, H., Xu, H.-J., Meyer, M., Girault, H.H.: Interfacial self-assembly of water-soluble cationic porphyrins for the reduction of oxygen to water. Angew. Chemie 51, 6447–6451 (2012)

    Article  CAS  Google Scholar 

  25. Olaya, A.A.J., Schaming, D., Brevet, P.-F., Nagatani, H., Zimmermann, T., Vanicek, J., Xu, H.-J., Gros, C.P., Barbe, J.-M., Girault, H.H.: Self-assembled molecular rafts at liquid|liquid interfaces for four-electron oxygen reduction. J. Am. Chem. Soc. 134, 498–506 (2012)

    Article  CAS  Google Scholar 

  26. Toth, P.S., Rodgers, A.N.J., Rabiu, A.K., Dryfe, R.A.W.: Electrochemical activity and metal deposition using few-layer graphene and carbon nanotubes assembled at the liquid–liquid interface. Electrochem. Commun. 50, 6–10 (2015)

    Article  CAS  Google Scholar 

  27. Toth, P.S., Ramasse, Q.M., Velický, M., Dryfe, R.A.W.: Functionalization of graphene at the organic/water interface. Chem. Sci. 6, 1316–1323 (2015)

    Article  CAS  Google Scholar 

  28. Toth, P.S., Velický, M., Ramasse, Q.M., Kepaptsoglou, D.M., Dryfe, R.A.W.: Symmetric and asymmetric decoration of graphene: bimetal-graphene sandwiches. Adv. Funct. Mater. 25, 2899–2909 (2015)

    Article  CAS  Google Scholar 

  29. Hatay, I., Su, B., Li, F., Méndez, M.A., Khoury, T., Gros, C.P., Barbe, J.-M., Ersoz, M., Samec, Z., Girault, H.H.: Proton-coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine. J. Am. Chem. Soc. 131, 13453–13459 (2009)

    Article  CAS  Google Scholar 

  30. Girault, H.H.: Analytical and Physical Electrochemistry. EPFL Press, Lausanne (2004)

    Book  Google Scholar 

  31. ElectroChemical DataBase: Gibbs Energies of transfer http://sbsrv7.epfl.ch/instituts/isic/lepa/cgi/DB/InterrDB.pl

  32. Olaya, A.J., Ge, P.-Y., Girault, H.H.: Ion transfer across the water|trifluorotoluene interface. Electrochem. Commun. 19, 101–104 (2012)

    Article  CAS  Google Scholar 

  33. Peljo, P., Smirnov, E., Girault, H.H.: Heterogeneous versus homogeneous electron transfer reactions at liquid–liquid interfaces: the wrong question? J. Electroanal. Chem. 779, 187–198 (2016)

    Article  CAS  Google Scholar 

  34. Atik, Z., Chaou, M.: Solubilities and phase equilibria for ternary solutions of Α, α, α-Trifluorotoluene, water, and 2-Propanol at three temperatures and pressure of 101.2 kPa. J. Chem. Eng. Data 52, 932–935 (2007)

    Article  CAS  Google Scholar 

  35. Su, B., Hatay, I., Trojánek, A., Samec, Z., Khoury, T., Gros, C.P., Barbe, J.-M., Daina, A., Carrupt, P.-A., Girault, H.H.: Molecular electrocatalysis for oxygen reduction by cobalt porphyrins adsorbed at liquid/liquid interfaces. J. Am. Chem. Soc. 132, 2655–2662 (2010)

    Article  CAS  Google Scholar 

  36. Trojánek, A., Langmaier, J., Samec, Z.: Thermodynamic driving force effects in the oxygen reduction catalyzed by a metal-free porphyrin. Electrochim. Acta 82, 457–462 (2012)

    Article  Google Scholar 

  37. Peljo, P., Rauhala, T., Murtomäki, L., Kallio, T., Kontturi, K.: Oxygen reduction at a water-1,2-dichlorobenzene interface catalyzed by cobalt tetraphenyl porphyrine—a fuel cell approach. Int. J. Hydrogen Energy 36, 10033–10043 (2011)

    Article  CAS  Google Scholar 

  38. Duan, H., Wang, D., Kurth, D.G., Mohwald, H.: Directing self-assembly of nanoparticles at water/oil interfaces. Angew. Chemie Int. Ed. 116, 5757–5760 (2004)

    Article  Google Scholar 

  39. Binks, B.P.: Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 21–41 (2002)

    Article  CAS  Google Scholar 

  40. Reincke, F., Hickey, S.G., Kegel, W.K., Vanmaekelbergh, D.: Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew. Chemie Int. Ed. 43, 458–462 (2004)

    Article  CAS  Google Scholar 

  41. Rodriguez, P., Koper, M.T.M.: Electrocatalysis on gold. Phys. Chem. Chem. Phys. 16, 13583 (2014)

    Article  CAS  Google Scholar 

  42. Smirnov, E., Peljo, P., Scanlon, M.D., Girault, H.H.: Gold nanofilm redox catalysis for oxygen reduction at soft interfaces. Electrochim. Acta 197, 362–373 (2016)

    Article  CAS  Google Scholar 

  43. Scanlon, M.D., Peljo, P., Méndez, M.A., Smirnov, E., Girault, H.H.: Charging and discharging at the nanoscale: fermi level equilibration of metallic nanoparticles. Chem. Sci. 6, 2705–2720 (2015)

    Article  CAS  Google Scholar 

  44. Battino, R., Rettich, T.R., Tominaga, T.: The solubility of oxygen and ozone in liquids. J. Phys. Chem. Ref. Data 12, 163 (1983)

    Article  CAS  Google Scholar 

  45. Luehring, P., Schumpe, A.: Gas solubilities (hydrogen, helium, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide) in organic liquids at 293.2 K. J. Chem. Eng. Data 34, 250–252 (1989)

    Article  CAS  Google Scholar 

  46. Quaino, P., Luque, N.B., Nazmutdinov, R., Santos, E., Schmickler, W.: Why is gold such a good catalyst for oxygen reduction in alkaline media? Angew. Chemie Int. Ed. 51, 12997–13000 (2012)

    Article  CAS  Google Scholar 

  47. Zhou, M., Yu, Y., Hu, K., Mirkin, M.V.: Nanoelectrochemical approach to detecting short-lived intermediates of electrocatalytic oxygen reduction. J. Am. Chem. Soc. 150515154407005 (2015)

    Google Scholar 

  48. Koper, M.T.M.: Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710 (2013)

    Article  CAS  Google Scholar 

  49. Fomin, V.M., Terekhina, A.A., Zaitseva, K.S.: Mechanism of the reaction of 1,1′-Diethylferrocene and decamethylferrocene with peroxides in organic solvents. Russ. J. Gen. Chem. (Translation Zhurnal Obs. Khimii), 83, 2324–2330 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smirnov, E. (2018). Gold Nanofilm Redox Electrocatalysis for Oxygen Reduction at Soft Interfaces. In: Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-77914-0_8

Download citation

Publish with us

Policies and ethics