Skip to main content

Optical Properties of Self-healing Gold Nanoparticles Mirrors and Filters at Liquid–Liquid Interfaces

  • Chapter
  • First Online:
Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces

Part of the book series: Springer Theses ((Springer Theses))

  • 470 Accesses

Abstract

This chapter illustrates a detailed study of optical and morphological properties of lustrous self-healing metal liquid-like nanofilms for different applications (e.g., optical mirrors or filters). Extinction and reflectance of nanofilms were investigated by an integrating sphere in UV, visible and NIR ranges with step-bystep increasing of nanoparticle surface coverage. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes: (i) smooth 2D monolayers of “floating islands” of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even at sub-full-monolayer conditions, and, finally, (iii) a 3D regime characterized by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. Also, comparison of optical properties of nanofilms at different water-organic solvent interfaces is presented. A maximal value of reflectance reached 58% in comparison to a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water–nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorb around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, X., Marocico, C.A., Lunz, M., Gerard, V.A., Gun’ko, Y.K., Lesnyak, V., Gaponik, N., Susha, A.S., Rogach, A.L., Bradley, A.L.: Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled förster resonance energy transfer. ACS Nano 8, 1273–1283 (2014)

    Article  CAS  Google Scholar 

  2. Ghosh, S.K., Pal, T.: Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–4862 (2007)

    Article  CAS  Google Scholar 

  3. Cohanoschi, I., Thibert, A., Toro, C., Zou, S., Hernández, F.E.: Surface plasmon enhancement at a liquid–metal–liquid interface. Plasmonics 2, 89–94 (2007)

    Article  CAS  Google Scholar 

  4. Scheeler, S.P., Mühlig, S., Rockstuhl, C., Hasan, S.B., Ullrich, S., Neubrech, F., Kudera, S., Pacholski, C.: Plasmon coupling in self-assembled gold nanoparticle-based honeycomb islands. J. Phys. Chem. C 117, 18634–18641 (2013)

    Article  CAS  Google Scholar 

  5. Macleod, H.A.: Thin-Film Optical Filters. 4th edn. CRC Press (2010)

    Google Scholar 

  6. Khan, Z.A., Kumar, R., Mohammed, W.S., Hornyak, G.L., Dutta, J.: Optical thin film filters of colloidal gold and silica nanoparticles prepared by a layer-by-layer self-assembly method. J. Mater. Sci. 46, 6877–6882 (2011)

    Article  CAS  Google Scholar 

  7. Ung, T., Liz-Marzán, L.M., Mulvaney, P.: Optical properties of thin films of Au@SiO 2 particles. J. Phys. Chem. B 105, 3441–3452 (2001)

    Article  CAS  Google Scholar 

  8. Borra, E.F., Seddiki, O., Angel, R., Eisenstein, D., Hickson, P., Seddon, K.R., Worden, S.P.: Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447, 979–981 (2007)

    Article  CAS  Google Scholar 

  9. Fang, P.-P., Chen, S., Deng, H., Scanlon, M.D., Gumy, F., Lee, H.J., Momotenko, D., Amstutz, V., Cortés-Salazar, F., Pereira, C.M., et al.: Conductive gold nanoparticle mirrors at liquid/liquid interfaces. ACS Nano 7, 9241–9248 (2013)

    Article  CAS  Google Scholar 

  10. Gingras, J., Déry, J.-P., Yockell-Lelièvre, H., Borra, E.F., Ritcey, A.M.: Surface films of silver nanoparticles for new liquid mirrors. Colloids Surfaces A Physicochem. Eng. Asp. 279, 79–86 (2006)

    Article  CAS  Google Scholar 

  11. Yen, Y., Lu, T., Lee, Y., Yu, C., Tsai, Y., Tseng, Y., Chen, H.: Highly reflective liquid mirrors: exploring the effects of localized surface plasmon resonance and the arrangement of nanoparticles on metal liquid-like films. ACS Appl. Mater. Interfaces 6, 4292–4300 (2014)

    Article  CAS  Google Scholar 

  12. Taylor, R.A., Otanicar, T.P., Herukerrupu, Y., Bremond, F., Rosengarten, G., Hawkes, E.R., Jiang, X., Coulombe, S.: Feasibility of nanofluid-based optical filters. Appl. Opt. 52, 1413–1422 (2013)

    Article  Google Scholar 

  13. Ung, T., Liz-Marzán, L.M., Mulvaney, P.: Gold nanoparticle thin films. Colloids Surfaces A Physicochem. Eng. Asp. 202, 119–126 (2002)

    Article  CAS  Google Scholar 

  14. Duan, H., Wang, D., Kurth, D.G., Mohwald, H.: Directing self-assembly of nanoparticles at water/oil interfaces. Angew. Chemie Int. Ed. 116, 5757–5760 (2004)

    Article  Google Scholar 

  15. Cheng, L., Liu, A., Peng, S., Duan, H.: Responsive plasmonic assemblies of amphiphilic nanocrystals at oil-water interfaces. ACS Nano 4, 6098–6104 (2010)

    Article  CAS  Google Scholar 

  16. Binder, W.H.: Supramolecular assembly of nanoparticles at liquid-liquid interfaces. Angew. Chemie Int. Ed. 44, 5172–5175 (2005)

    Article  CAS  Google Scholar 

  17. Edel, J.B., Kornyshev, A.A., Urbakh, M.: Self-assembly of nanoparticle arrays for use as mirrors, sensors, and antennas. ACS Nano 7, 9526–9532 (2013)

    Article  CAS  Google Scholar 

  18. Böker, A., He, J., Emrick, T., Russell, T.P.: Self-assembly of nanoparticles at interfaces. Soft Matter 3, 1231 (2007)

    Article  Google Scholar 

  19. Wang, D., Duan, H., Möhwald, H.: The water/oil interface: the emerging horizon for self-assembly of nanoparticles. Soft Matter 1, 412–416 (2005)

    Article  CAS  Google Scholar 

  20. Amarandei, G., Clancy, I., O’Dwyer, C., Arshak, A., Corcoran, D.: Stability of ultrathin nanocomposite polymer films controlled by the embedding of gold nanoparticles. ACS Appl. Mater. Interfaces 6, 20758–20767 (2014)

    Article  CAS  Google Scholar 

  21. Olaya, A.A.J., Schaming, D., Brevet, P.-F., Nagatani, H., Zimmermann, T., Vanicek, J., Xu, H.-J., Gros, C.P., Barbe, J.-M., Girault, H.H.: Self-assembled molecular rafts at liquid|liquid interfaces for four-electron oxygen reduction. J. Am. Chem. Soc. 134, 498–506 (2012)

    Article  CAS  Google Scholar 

  22. Peljo, P., Murtomäki, L., Kallio, T., Xu, H.-J., Meyer, M., Gros, C.P., Barbe, J.-M., Girault, H.H., Laasonen, K., Kontturi, K.: Biomimetic oxygen reduction by cofacial porphyrins at a liquid-liquid interface. J. Am. Chem. Soc. 134, 5974–5984 (2012)

    Article  CAS  Google Scholar 

  23. Reincke, F., Hickey, S.G., Kegel, W.K., Vanmaekelbergh, D.: Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew. Chemie Int. Ed. 43, 458–462 (2004)

    Article  CAS  Google Scholar 

  24. Smirnov, E., Scanlon, M.D., Momotenko, D., Vrubel, H., Méndez, M.A., Brevet, P-F., Girault, H.H.: Gold metal liquid-like droplets. ACS Nano, 8, 9471–9481 (2014)

    Article  CAS  Google Scholar 

  25. Bormashenko, E.: Liquid marbles: properties and applications. Curr. Opin. Colloid Interface Sci. 16, 266–271 (2011)

    Article  CAS  Google Scholar 

  26. Edel, J.B., Kornyshev, A.A., Kucernak, A.R., Urbakh, M.: Fundamentals and applications of self-assembled plasmonic nanoparticles at interfaces. Chem. Soc. Rev. 45, 1581–1596 (2016)

    Article  CAS  Google Scholar 

  27. Gadogbe, M., Ansar, S.M., Chu, I.-W., Zou, S., Zhang, D.: Comparative study of the self-assembly of gold and silver nanoparticles onto thiophene oil. Langmuir 30, 11520–11527 (2014)

    Article  CAS  Google Scholar 

  28. Yogev, D., Efrima, S.: Novel silver metal liquidlike films. J. Phys. Chem. 92, 5754–5760 (1988)

    Article  CAS  Google Scholar 

  29. Park, Y.-K., Park, S.: Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface. Chem. Mater. 20, 2388–2393 (2008)

    Article  CAS  Google Scholar 

  30. Park, Y.-K., Yoo, S.-H., Park, S.: Assembly of highly ordered nanoparticle monolayers at a water/hexane interface. Langmuir 23, 10505–10510 (2007)

    Article  CAS  Google Scholar 

  31. Smirnov, E., Peljo, P., Scanlon, M.D., Girault, H.H.: Interfacial redox catalysis on gold nanofilms at soft interfaces. ACS Nano 9, 6565–6575 (2015)

    Article  CAS  Google Scholar 

  32. Turek, V.A., Cecchini, M.P., Paget, J., Kucernak, A.R., Kornyshev, A.A., Edel, J.B.: Plasmonic ruler at the liquid-liquid interface. ACS Nano 6, 7789–7799 (2012)

    Article  CAS  Google Scholar 

  33. Bigioni, T.P., Lin, X-M., Nguyen, T.T., Corwin, E.I., Witten, T.A., Jaeger, H.M.: Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 5, 265–270 (2006)

    Article  CAS  Google Scholar 

  34. Kowalczyk, B., Lagzi, I., Grzybowski, B.A.: “Nanoarmoured” droplets of different shapes formed by interfacial self-assembly and crosslinking of metal nanoparticles. Nanoscale 2, 2366–2369 (2010)

    Article  CAS  Google Scholar 

  35. Olson, M., Coskun, A., Klajn, R., Fang, L., Dey, S.K., Browne, K.P., Grzybowski, B., Stoddart, J.F.: Assembly of polygonal nanoparticle clusters directed by reversible noncovalent bonding interactions. Nano Lett. 9, 3185–3190 (2009)

    Article  CAS  Google Scholar 

  36. Sashuk, V., Hołyst, R., Wojciechowski, T., Górecka, E., Fiałkowski, M.: Autonomous self-assembly of ionic nanoparticles into hexagonally close-packed lattices at a planar oil-water interface. Chem. (Easton) 18, 2235–2238 (2012)

    CAS  Google Scholar 

  37. Liu, Y., Lin, X.-M., Sun, Y., Rajh, T.: In Situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc. 135, 3764–3767 (2013)

    Article  CAS  Google Scholar 

  38. Zhou, C., Li, Y.: Self-assembly of low dimensional nanostructures and materials via supramolecular interactions at interfaces. J. Colloid Interface Sci. 397, 45–64 (2013)

    Article  CAS  Google Scholar 

  39. Flatte, M.E., Kornyshev, A.A., Urbakh, M.: Electrovariable nanoplasmonics and self-assembling smart mirrors. J. Phys. Chem. C 114, 1735–1747 (2010)

    Article  CAS  Google Scholar 

  40. Abid, J.-P., Abid, M., Bauer, C., Girault, H.H., Brevet, P.-F.: Controlled reversible adsorption of core-shell metallic nanoparticles at the polarized Water/1,2-Dichloroethane interface investigated by optical second-harmonic generation. J. Phys. Chem. C 111, 8849–8855 (2007)

    Article  CAS  Google Scholar 

  41. Kim, K., Han, H.S., Choi, I., Lee, C., Hong, S., Suh, S.-H., Lee, L.P., Kang, T.: Interfacial liquid-state surface-enhanced raman spectroscopy. Nat. Commun. 4, 2182 (2013)

    Google Scholar 

  42. Cecchini, M.P., Turek, V.A., Paget, J., Kornyshev, A.A., Edel, J.B.: Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 12, 165–171 (2012)

    Article  Google Scholar 

  43. Amarandei, G., O’Dwyer, C., Arshak, A., Corcoran, D.: Fractal patterning of nanoparticles on polymer films and their sers capabilities. ACS Appl. Mater. Interfaces. 5, 8655–8662 (2013)

    Article  CAS  Google Scholar 

  44. Zhang, K., Zhao, J., Ji, J., Li, Y., Liu, B.: Quantitative label-free and real-time surface-enhanced raman scattering monitoring of reaction kinetics using self-assembled bifunctional nanoparticle arrays. Anal. Chem. 87, 8702–8708 (2015)

    Article  CAS  Google Scholar 

  45. Wang, B.-L., Ren, M.-L., Li, J.-F., Li, Z.-Y.: Plasmonic coupling effect between two gold nanospheres for efficient second-harmonic generation. J. Appl. Phys. 112, 83102 (2012)

    Article  Google Scholar 

  46. Hojeij, M., Younan, N., Ribeaucourt, L., Girault, H.H.: Surface plasmon resonance of gold nanoparticles assemblies at liquid|liquid interfaces. Nanoscale 2, 1665–1669 (2010)

    Article  Google Scholar 

  47. Butet, J., Brevet, P.-F., Martin, O.J.F.: Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano 9, 10545–10562 (2015)

    Article  CAS  Google Scholar 

  48. Smirnov, E., Peljo, P., Scanlon, M.D., Girault, H.H.: Gold nanofilm redox catalysis for oxygen reduction at soft interfaces. Electrochim. Acta 197, 362–373 (2016)

    Article  CAS  Google Scholar 

  49. Toth, P.S., Rodgers, A.N.J., Rabiu, A.K., Dryfe, R.A.W.: Electrochemical activity and metal deposition using few-layer graphene and carbon nanotubes assembled at the liquid–liquid interface. Electrochem. Commun. 50, 6–10 (2015)

    Article  CAS  Google Scholar 

  50. Shopa, M., Kolwas, K., Derkachova, A., Derkachov, G.: Dipole and quadrupole surface plasmon resonance contributions in formation of near-field images of a gold nanosphere. Opto-Electronics Rev. 18, 421–428 (2010)

    Article  Google Scholar 

  51. Evlyukhin, A.B., Reinhardt, C., Zywietz, U., Chichkov, B.N.: Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions. Phys. Rev. B 85, 245411 (2012)

    Article  Google Scholar 

  52. Myroshnychenko, V., Rodríguez-Fernández, J., Pastoriza-Santos, I., Funston, A.M., Novo, C., Mulvaney, P., Liz-Marzán, L.M., García de Abajo, F.J.: Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792–1805 (2008)

    Article  CAS  Google Scholar 

  53. Smirnov, E., Peljo, P., Scanlon, M.D., Gumy, F., Girault, H.H.: Self-healing gold mirrors and filters at liquid–liquid interfaces. Nanoscale 8, 7723–7737 (2016)

    Article  CAS  Google Scholar 

  54. Sandroff, C.J., Weitz, D.A., Chung, J.C., Herschbach, D.R.: Charge transfer from tetrathiafulvalene to silver and gold surfaces studied by surface-enhanced Raman scattering. J. Phys. Chem. 87, 2127–2133 (1983)

    Article  CAS  Google Scholar 

  55. Novo, C., Funston, A.M., Gooding, A.K., Mulvaney, P.: Electrochemical charging of single gold nanorods. J. Am. Chem. Soc. 131, 14664–14666 (2009)

    Article  CAS  Google Scholar 

  56. Novo, C., Funston, A.M., Mulvaney, P.: Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 3, 598–602 (2008)

    Article  CAS  Google Scholar 

  57. Yang, Z., Chen, S., Fang, P., Ren, B., Girault, H.H., Tian, Z.: LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface. Phys. Chem. Chem. Phys. 15, 5374–5378 (2013)

    Article  CAS  Google Scholar 

  58. Karg, M., Schelero, N., Oppel, C., Gradzielski, M., Hellweg, T., von Klitzing, R.: Versatile phase transfer of gold nanoparticles from aqueous media to different organic media. Chemistry (Easton). 17, 4648–4654 (2011)

    CAS  Google Scholar 

  59. Lista, M., Liu, D.Z., Mulvaney, P.: Phase transfer of noble metal nanoparticles to organic solvents. Langmuir 30, 1932–1938 (2014)

    Article  CAS  Google Scholar 

  60. Liu, Y., Han, X., He, L., Yin, Y.: Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling. Angew. Chemie 51, 6373–6377 (2012)

    Article  CAS  Google Scholar 

  61. Goldmann, C., Lazzari, R., Paquez, X., Boissière, C., Ribot, F., Sanchez, C., Chanéac, C., Portehault, D.: Charge transfer at hybrid interfaces: plasmonics of aromatic thiol-capped gold nanoparticles. ACS Nano 9, 7572–7582 (2015)

    Article  CAS  Google Scholar 

  62. Jung, H., Cha, H., Lee, D., Yoon, S.: Bridging the nanogap with light: continuous tuning of plasmon coupling between gold nanoparticles. ACS Nano 9, 12292–12300 (2015)

    Article  CAS  Google Scholar 

  63. Pazos-Perez, N., Wagner, C.S., Romo-Herrera, J.M., Liz-Marzán, L.M., García de Abajo, F.J., Wittemann, A., Fery, A., Alvarez-Puebla, R.A.: Organized plasmonic clusters with high coordination number and extraordinary enhancement in surface-enhanced Raman scattering (SERS). Angew. Chemie Int. Ed. 51, 12688–12693 (2012)

    Article  CAS  Google Scholar 

  64. Momotenko, D.: Scanning electrochemical microscopy and finite element modeling of structural and transport properties of electrochemical systems, EPFL (2013)

    Google Scholar 

  65. Schwartz, H., Harel, Y., Efrima, S.: Surface behavior and buckling of silver interfacial colloid films. Langmuir 17, 3884–3892 (2001)

    Article  CAS  Google Scholar 

  66. Aveyard, R., Clint, J.H., Nees, D., Quirke, N.: Structure and collapse of particle monolayers under lateral pressure at the octane/aqueous surfactant solution interface. Langmuir 16, 8820–8828 (2000)

    Article  CAS  Google Scholar 

  67. Bresme, F., Oettel, M.: Nanoparticles at fluid interfaces. J. Phys. Condens. Matter 19, 413101 (2007)

    Article  CAS  Google Scholar 

  68. Atay, T., Song, J.-H., Nurmikko, A.V.: Strongly interacting plasmon nanoparticle pairs: from dipole − dipole interaction to conductively coupled regime. Nano Lett. 4, 1627–1631 (2004)

    Article  CAS  Google Scholar 

  69. Konrad, M.P., Doherty, A.P., Bell, S.E.J.: Stable and uniform SERS signals from self-assembled two-dimensional interfacial arrays of optically coupled Ag nanoparticles. Anal. Chem. 85, 6783–6789 (2013)

    Article  CAS  Google Scholar 

  70. Zhang, K., Ji, J., Li, Y., Liu, B.: Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced raman scattering sensor for specific detection of trace analytes. Anal. Chem. 86, 6660–6665 (2014)

    Article  CAS  Google Scholar 

  71. Girault, H.H.J., Schiffrin, D.J.: Adsorption of Phosphatidylcholine and Phosphatidyl-Ethanolamine at the polarised water/1,2-Dichloroethane interface. J. Electroanal. Chem. Interfacial Electrochem. 179, 277–284 (1984)

    Article  CAS  Google Scholar 

  72. Kakiuchi, T., Nakanishi, M., Senda, M.: The electrocapillary curves of the phosphatidylcholine monolayer at the polarized oil–water interface. I. Measurement of interfacial tension using a computer-aided. Bull. Chem. Soc. Japan 61, 1845–1851 (1988)

    Article  CAS  Google Scholar 

  73. Bahramian, A., Danesh, A.: Prediction of liquid–liquid interfacial tension in multi-component systems. Fluid Phase Equilib. 221, 197–205 (2004)

    Article  CAS  Google Scholar 

  74. Haynes, W.M.: CRC Handbook of Chemistry & Physics, 95th edn. Taylor & Francis Ltd. (2014)

    Google Scholar 

  75. Moskovits, M., Srnová-Šloufová, I., Vlčková, B.: Bimetallic Ag–Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 116, 10435 (2002)

    Article  CAS  Google Scholar 

  76. Srnová-Šloufová, I., Lednický, F., Gemperle, A., Gemperlová, J.: Core − Shell (Ag)Au Bimetallic nanoparticles: analysis of transmission electron microscopy images. Langmuir 16, 9928–9935 (2000)

    Article  Google Scholar 

  77. Zhuo, Y., Yuan, R., Chai, Y., Zhang, Y., Li, X., Wang, N., Zhu, Q.: Amperometric enzyme immunosensors based on layer-by-layer assembly of gold nanoparticles and thionine on nafion modified electrode surface for α-1-Fetoprotein determinations. Sens. Actuators B Chem. 114, 631–639 (2006)

    Article  CAS  Google Scholar 

  78. Liu, D., Zhou, F., Li, C., Zhang, T., Zhang, H., Cai, W., Li, Y.: Black gold: Plasmonic Colloidosomes with broadband absorption self-assembled from Monodispersed Gold Nanospheres by using a reverse emulsion system. Angew. Chemie Int. Ed. 54, 9596–9600 (2015)

    Article  CAS  Google Scholar 

  79. Wang, J., Busse, H., Syomin, D., Koel, B.E.: Coordination and bonding geometry of Nitromethane (CH3NO2) on Au(111) surfaces. Surf. Sci. 494, L741–L747 (2001)

    Article  CAS  Google Scholar 

  80. Wang, J., Bansenauer, B.A., Koel, B.E.: Nitromethane and Methyl Nitrite adsorption on Au(111) surfaces. Langmuir, 14, 3255–3263 (1998)

    Article  CAS  Google Scholar 

  81. Pipino, A.C.R., Silin, V.: Gold nanoparticle response to nitro-compounds probed by cavity ring-down spectroscopy. Chem. Phys. Lett. 404, 361–364 (2005)

    Article  CAS  Google Scholar 

  82. Mao, Z., Xu, H., Wang, D.: Molecular mimetic self-assembly of colloidal particles. Adv. Funct. Mater. 20, 1053–1074 (2010)

    Article  CAS  Google Scholar 

  83. Huang, P., Lin, J., Li, W., Rong, P., Wang, Z., Wang, S., Wang, X., Sun, X., Aronova, M., Niu, G., et al.: Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew. Chemie Int. Ed. 52, 13958–13964 (2013)

    Article  CAS  Google Scholar 

  84. Lin, J., Wang, S., Huang, P., Wang, Z., Chen, S., Niu, G., Li, W., He, J., Cui, D., Lu, G., et al.: Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7, 5320–5329 (2013)

    Article  CAS  Google Scholar 

  85. Niikura, K., Iyo, N., Matsuo, Y., Mitomo, H., Ijiro, K.: Sub-100 Nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl. Mater. Interfaces 5, 3900–3907 (2013)

    Article  CAS  Google Scholar 

  86. Song, J., Pu, L., Zhou, J., Duan, B., Duan, H.: Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS Nano 7, 9947–9960 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smirnov, E. (2018). Optical Properties of Self-healing Gold Nanoparticles Mirrors and Filters at Liquid–Liquid Interfaces. In: Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-77914-0_4

Download citation

Publish with us

Policies and ethics