Skip to main content

Self-Assembly of Nanoparticles into Gold Metal Liquid-like Droplets (MeLLDs)

  • Chapter
  • First Online:
Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces

Part of the book series: Springer Theses ((Springer Theses))

  • 494 Accesses

Abstract

Simple methods to self-assemble coatings and films from nanoparticles are highly desirable in many practical scenarios, yet scarcely any examples of simple, robust approaches to coat macroscopic droplets with continuous, thick (multilayer), reflective, and stable liquid nanoparticle films exist. Here, we introduce a facile and rapid one-step route to form films of reflective liquid-like gold that encase macroscopic droplets, and denote these as gold metal liquid-like droplets (MeLLDs). The present approach takes advantage of the inherent self-assembly of gold nanoparticles at liquid–liquid interfaces and the increase in rates of nanoparticle aggregate trapping at the interface during emulsification. The ease of displacement of the stabilizing citrate ligands by appropriate redox active molecules that act as a lubricating molecular glue is key. Specifically, the heterogeneous interaction of citrate-stabilized aqueous gold nanoparticles with the lipophilic electron donor tetrathiafulvalene under emulsification produces gold MeLLDs. This methodology is novel, relying exclusively on electrochemical reactions, i.e., the oxidation of tetrathiafulvalene to its radical cation by the gold nanoparticle, and electrostatic interactions between the radical cation and nanoparticles. The gold MeLLDs are reversibly deformable upon compression and decompression and kinetically stable for extended periods of time in excess of a year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sönnichsen, C., Reinhard, B.M., Liphardt, J., Alivisatos, A.P.: A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741–745 (2005)

    Article  Google Scholar 

  2. Ghosh, S.K., Pal, T.: Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–4862 (2007)

    Article  CAS  Google Scholar 

  3. Es-Souni, M., Fischer-Brandies, H., Es-Souni, M.: Versatile nanocomposite coatings with tunable cell adhesion and bactericidity. Adv. Funct. Mater. 18, 3179–3188 (2008)

    Article  CAS  Google Scholar 

  4. Puntes, V., Krishnan, K., Alivisatos, A.: Colloidal nanocrystal shape and size control: the case of cobalt. Science (80) 291, 2215–2117 (2001)

    Article  CAS  Google Scholar 

  5. Borra, E.F., Seddiki, O., Angel, R., Eisenstein, D., Hickson, P., Seddon, K.R., Worden, S.P.: Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447, 979–981 (2007)

    Article  CAS  Google Scholar 

  6. Khan, Z.A., Kumar, R., Mohammed, W.S., Hornyak, G.L., Dutta, J.: Optical thin film filters of colloidal gold and silica nanoparticles prepared by a layer-by-layer self-assembly method. J. Mater. Sci. 46, 6877–6882 (2011)

    Article  CAS  Google Scholar 

  7. Saha, K., Agasti, S.S., Kim, C., Li, X., Rotello, V.M.: Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012)

    Article  CAS  Google Scholar 

  8. Daniel, M.C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Article  CAS  Google Scholar 

  9. Borisova, D., Mohwald, H., Shchukin, D.G.: Mesoporous silica nanoparticles for active corrosion protection. ACS Nano 5, 1939–1946 (2011)

    Article  CAS  Google Scholar 

  10. Zhang, X.T., Sato, O., Taguchi, M., Einaga, Y., Murakami, T., Fujishima, A.: Self-Cleaning particle coating with antireflection properties. Chem. Mater. 17, 696–700 (2005)

    Article  CAS  Google Scholar 

  11. Kowalczyk, B., Lagzi, I., Grzybowski, B.A: “Nanoarmoured” droplets of different shapes formed by interfacial self-assembly and crosslinking of metal nanoparticles. Nanoscale 2, 2366–2369 (2010)

    Article  CAS  Google Scholar 

  12. Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 865 (2010)

    Google Scholar 

  13. Huda, S., Smoukov, S.K., Nakanishi, H., Kowalczyk, B., Bishop, K., Grzybowski, B.A.: Antibacterial nanoparticle monolayers prepared on chemically inert surfaces by cooperative electrostatic adsorption (CELA). ACS Appl. Mater. Interfaces 2, 1206–1210 (2010)

    Article  CAS  Google Scholar 

  14. Binder, W.H.: Supramolecular assembly of nanoparticles at liquid-liquid interfaces. Angew. Chemie Int. Ed. 44, 5172–5175 (2005)

    Article  CAS  Google Scholar 

  15. Edel, J.B., Kornyshev, A.A., Urbakh, M.: Self-assembly of nanoparticle arrays for use as mirrors, sensors, and antennas. ACS Nano 7, 9526–9532 (2013)

    Article  CAS  Google Scholar 

  16. Wang, D., Duan, H., Möhwald, H.: The water/oil interface: the emerging horizon for self-assembly of nanoparticles. Soft Matter 1, 412–416 (2005)

    Article  CAS  Google Scholar 

  17. Böker, A., He, J., Emrick, T., Russell, T.P.: Self-assembly of nanoparticles at interfaces. Soft Matter 3, 1231 (2007)

    Article  Google Scholar 

  18. Yogev, D., Efrima, S.: Novel silver metal liquidlike films. J. Phys. Chem. 92, 5754–5760 (1988)

    Article  CAS  Google Scholar 

  19. Reincke, F., Hickey, S.G., Kegel, W.K., Vanmaekelbergh, D.: Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew. Chemie Int. Ed. 43, 458–462 (2004)

    Article  CAS  Google Scholar 

  20. Park, Y.-K., Yoo, S.-H., Park, S.: Assembly of highly ordered nanoparticle monolayers at a water/hexane interface. Langmuir 23, 10505–10510 (2007)

    Article  CAS  Google Scholar 

  21. Turek, V.A., Cecchini, M.P., Paget, J., Kucernak, A.R., Kornyshev, A.A., Edel, J.B.: Plasmonic ruler at the liquid-liquid interface. ACS Nano 6, 7789–7799 (2012)

    Article  CAS  Google Scholar 

  22. Konrad, M.P., Doherty, A.P., Bell, S.E.J.: Stable and uniform SERS signals from self-assembled two-dimensional interfacial arrays of optically coupled Ag nanoparticles. Anal. Chem. 85, 6783–6789 (2013)

    Article  CAS  Google Scholar 

  23. Lee, K.Y., Cheong, G.-W., Han, S.W.: C60-Mediated self-assembly of gold nanoparticles at the liquid/liquid interface. Colloids Surf. A Physicochem. Eng. Asp. 275, 79–82 (2006)

    Article  CAS  Google Scholar 

  24. Spiro, M.: Heterogeneous catalysis in solution. Part 17.—kinetics of oxidation–reduction reaction catalysed by electron transfer through the solid: an electrochemical treatment. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 75, 1507 (1979)

    Article  CAS  Google Scholar 

  25. Kim, K., Han, H.S., Choi, I., Lee, C., Hong, S., Suh, S.-H., Lee, L.P., Kang, T.: Interfacial liquid-state surface-enhanced raman spectroscopy. Nat. Commun. 4, 2182 (2013)

    Google Scholar 

  26. Fang, P.-P., Chen, S., Deng, H., Scanlon, M.D., Gumy, F., Lee, H.J., Momotenko, D., Amstutz, V., Cortés-Salazar, F., Pereira, C.M., et al.: Conductive gold nanoparticle mirrors at liquid/liquid interfaces. ACS Nano 7, 9241–9248 (2013)

    Article  CAS  Google Scholar 

  27. Du, K., Knutson, C.R., Glogowski, E., McCarthy, K.D., Shenhar, R., Rotello, V.M., Tuominen, M.T., Emrick, T., Russell, T.P., Dinsmore, A.D.: Self-Assembled electrical contact to nanoparticles using metallic droplets. Small 5, 1974–1977 (2009)

    Article  CAS  Google Scholar 

  28. Du, K., Glogowski, E., Tuominen, M.T., Emrick, T., Russell, T.P., Dinsmore, A.D.: Self-Assembly of gold nanoparticles on gallium droplets: controlling charge transport through microscopic devices. Langmuir 29, 13640–13646 (2013)

    Article  CAS  Google Scholar 

  29. Xu, Y., Konrad, M.P., Lee, W.W.Y., Ye, Z., Bell, S.E.J.: A method for promoting assembly of metallic and nonmetallic nanoparticles into interfacial monolayer films. Nano Lett. 16, 5255–5260 (2016)

    Article  CAS  Google Scholar 

  30. Duan, H., Wang, D., Kurth, D.G., Mohwald, H.: Directing self-assembly of nanoparticles at water/oil interfaces. Angew. Chemie Int. Ed. 116, 5757–5760 (2004)

    Article  Google Scholar 

  31. Gadogbe, M., Ansar, S.M., Chu, I.-W., Zou, S., Zhang, D.: Comparative study of the self-assembly of gold and silver nanoparticles onto thiophene oil. Langmuir 30, 11520–11527 (2014)

    Article  CAS  Google Scholar 

  32. Samanta, B., Yang, X.C., Ofir, Y., Park, M.H., Patra, D., Agasti, S.S., Miranda, O.R., Mo, Z.H., Rotello, V.M.: Catalytic microcapsules assembled from enzyme-nanoparticle conjugates at oil-water interfaces. Angew. Chemie Int. Ed. 48, 5341–5344 (2009)

    Article  CAS  Google Scholar 

  33. Glogowski, E., He, J., Russell, T.P., Emrick, T.: Mixed monolayer coverage on gold nanoparticles for interfacial stabilization of immiscible fluids. Chem. Commun. 1, 4050–4052 (2005)

    Article  Google Scholar 

  34. Glogowski, E., Tangirala, R., He, J., Russell, T.P., Emrick, T.: Microcapsules of PEGylated gold nanoparticles prepared by fluid-fluid interfacial assembly. Nano Lett. 7, 389–393 (2007)

    Article  CAS  Google Scholar 

  35. Duan, H., Wang, D., Sobal, N.S., Giersig, M., Kurth, D.G., Möhwald, H.: Magnetic colloidosomes derived from nanoparticle interfacial self-assembly. Nano Lett. 5, 949–952 (2005)

    Article  CAS  Google Scholar 

  36. Smirnov, E., Scanlon, M.D., Momotenko, D., Vrubel, H., Méndez, M.A., Brevet, P.-F., Girault, H.H.: Gold metal liquid-like droplets. ACS Nano 8, 9471–9481 (2014)

    Article  CAS  Google Scholar 

  37. Yogev, D., Efrima, S.: Silver metal liquidlike films (MELLFs). The effect of surfactants. Langmuir 2, 267–271 (1991)

    Article  Google Scholar 

  38. Collier, C.P.: Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science (80) 277, 1978–1981 (1997)

    Article  CAS  Google Scholar 

  39. Younan, N., Hojeij, M., Ribeaucourt, L., Girault, H.H.: Electrochemical properties of gold nanoparticles assembly at polarised liquid|liquid interfaces. Electrochem. Commun. 12, 912–915 (2010)

    Article  CAS  Google Scholar 

  40. Gingras, J., Déry, J.-P., Yockell-Lelièvre, H., Borra, E.F., Ritcey, A.M.: Surface films of silver nanoparticles for new liquid mirrors. Colloids Surf. A Physicochem. Eng. Asp. 279, 79–86 (2006)

    Article  CAS  Google Scholar 

  41. Yen, Y., Lu, T., Lee, Y., Yu, C., Tsai, Y., Tseng, Y., Chen, H.: Highly reflective liquid mirrors: exploring the effects of localized surface plasmon resonance and the arrangement of nanoparticles on metal liquid-like films. ACS Appl. Mater. Interfaces 6, 4292–4300 (2014)

    Article  CAS  Google Scholar 

  42. Moskovits, M., Srnová-Šloufová, I., Vlčková, B.: Bimetallic Ag–Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 116, 10435 (2002)

    Article  CAS  Google Scholar 

  43. Srnová-Šloufová, I., Lednický, F., Gemperle, A., Gemperlová, J.: Core−Shell (Ag)Au bimetallic nanoparticles: analysis of transmission electron microscopy images. Langmuir 16, 9928–9935 (2000)

    Article  Google Scholar 

  44. Zhuo, Y., Yuan, R., Chai, Y., Zhang, Y., Li, X., Wang, N., Zhu, Q.: Amperometric enzyme immunosensors based on layer-by-layer assembly of gold nanoparticles and thionine on nafion modified electrode surface for α-1-fetoprotein determinations. Sensors Actuators B Chem. 114, 631–639 (2006)

    Article  CAS  Google Scholar 

  45. Smirnov, E., Peljo, P., Scanlon, M.D., Gumy, F., Girault, H.H.: Self-healing gold mirrors and filters at liquid–liquid interfaces. Nanoscale 8, 7723–7737 (2016)

    Article  CAS  Google Scholar 

  46. Hutter, E., Fendler, J.H.: Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004)

    Article  CAS  Google Scholar 

  47. Zhao, L., Zhao, L.L., Kelly, K.L., Kelly, K.L., Schatz, G.C., Schatz, G.C.: The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B 107, 7343–7350 (2003)

    Article  CAS  Google Scholar 

  48. Olaya, A.A.J., Ge, P.-Y., Gonthier, J.F., Pechy, P., Corminboeuf, C., Girault, H.H.: Four-electron oxygen reduction by tetrathiafulvalene. J. Am. Chem. Soc. 133, 12115–12123 (2011)

    Article  CAS  Google Scholar 

  49. Weitz, D.A., Oliveria, M.: Fractal structures formed by kinetic aggregation of aqueous gold colloids. Phys. Rev. Lett. 52, 1433–1436 (1984)

    Article  CAS  Google Scholar 

  50. Kim, J.-Y., Kotov, N.A.: Charge transport dilemma of solution-processed nanomaterials. Chem. Mater. 26, 134–152 (2014)

    Article  Google Scholar 

  51. Müller, K., Wei, G., Raguse, B., Myers, J.: Three-Dimensional percolation effect on electrical conductivity in films of metal nanoparticles linked by organic molecules. Phys. Rev B 68, 155407 (2003)

    Article  Google Scholar 

  52. Momotenko, D.: Scanning electrochemical microscopy and finite element modeling of structural and transport properties of electrochemical systems, EPFL (2013)

    Google Scholar 

  53. Sandroff, C.J., Weitz, D.A., Chung, J.C., Herschbach, D.R.: Charge transfer from tetrathiafulvalene to silver and gold surfaces studied by surface-enhanced raman scattering. J. Phys. Chem. 87, 2127–2133 (1983)

    Article  CAS  Google Scholar 

  54. Weitz, D., Lin, M., Sandroff, C.: Colloidal aggregation revisited: new insights based on fractal structure and surface-enhanced raman scattering. Surf. Sci. 158, 147–164 (1985)

    Article  CAS  Google Scholar 

  55. Kuo, T.-C., Hsu, T.-C., Liu, Y.-C., Yang, K.-H.: Size-controllable synthesis of surface-enhanced raman scattering-active gold nanoparticles coated on TiO2. Analyst 137, 3847–3853 (2012)

    Article  CAS  Google Scholar 

  56. Hong, S., Li, X.: Optimal size of gold nanoparticles for surface-enhanced raman spectroscopy under different conditions. J. Nanomater. 2013, 1–9 (2013)

    Google Scholar 

  57. De Melo, V.H.S., Zamarion, V.M., Araki, K., Toma, H.E.: New insights on surface-enhanced raman scattering based on controlled aggregation and spectroscopic studies, DFT calculations and symmetry analysis for 3,6-Bi-2-Pyridyl-1,2,4,5-Tetrazine adsorbed onto citrate-stabilized gold nanoparticles. J. Raman Spectrosc. 42, 644–652 (2011)

    Article  Google Scholar 

  58. Grasseschi, D., Ando, R.A., Toma, H.E., Zamarion, V.M.: Unraveling the nature of turkevich gold nanoparticles: the unexpected role of the dicarboxyketone species. RSC Adv. 5, 5716–5724 (2015)

    Article  CAS  Google Scholar 

  59. Wuithschick, M., Birnbaum, A., Witte, S., Sztucki, M., Vainio, U., Pinna, N., Rademann, K., Emmerling, F., Kraehnert, R., Polte, J.: Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. ACS Nano 9, 7052–7071 (2015)

    Article  CAS  Google Scholar 

  60. Spruell, J.M., Coskun, A., Friedman, D.C., Forgan, R.S., Sarjeant, A.A., Trabolsi, A., Fahrenbach, A.C., Barin, G., Paxton, W.F., Dey, S.K., et al.: Highly stable tetrathiafulvalene radical dimers in [3]catenanes. Nat. Chem. 2, 870–879 (2010)

    Article  CAS  Google Scholar 

  61. Coskun, A., Spruell, J.M., Barin, G., Fahrenbach, A.C., Forgan, R.S., Colvin, M.T., Carmieli, R., Benítez, D., Tkatchouk, E., Friedman, D.C., et al.: Mechanically stabilized tetrathiafulvalene radical dimers. J. Am. Chem. Soc. 133, 4538–4547 (2011)

    Article  CAS  Google Scholar 

  62. Siedle, A.R., Candela, G.A., Finnegan, T.F., Van Duyne, R.P., Cape, T., Kokoszka, G.F., Woyciejes, P.M., Hashmall, J.A.: Copper and gold metallotetrathiaethylenes. Inorg. Chem. 20, 2635–2640 (1981)

    Article  CAS  Google Scholar 

  63. Puigmartí-Luis, J., Stadler, J., Schaffhauser, D., del Pino, Á.P., Burg, B.R., Dittrich, P.S.: Guided assembly of metal and hybrid conductive probes using floating potential dielectrophoresis. Nanoscale 3, 937 (2011)

    Article  Google Scholar 

  64. Ojea-Jiménez, I., Puntes, V.: Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions. J. Am. Chem. Soc. 131, 13320–13327 (2009)

    Article  Google Scholar 

  65. Wang, D., Tejerina, B., Lagzi, I., Kowalczyk, B., Grzybowski, B.A.: Bridging interactions and selective nanoparticle aggregation mediated by monovalent cations. ACS Nano 5, 530–536 (2011)

    Article  Google Scholar 

  66. Le Ru, E.C., Blackie, E., Meyer, M., Etchegoin, P.G.: Surface enhanced raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111, 13794–13803 (2007)

    Article  CAS  Google Scholar 

  67. Tripathi, A., Emmons, E.D., Fountain, A.W., Guicheteau, J.A., Moskovits, M., Christesen, S.D.: Critical role of adsorption equilibria on the determination of surface-enhanced raman enhancement. ACS Nano 9, 584–593 (2015)

    Article  CAS  Google Scholar 

  68. Joseph, Y., Besnard, I., Rosenberger, M., Guse, B., Nothofer, H.-G., Wessels, J.M., Wild, U., Knop-Gericke, A., Su, D., Schlögl, R., et al.: Self-assembled gold nanoparticle/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties †. J. Phys. Chem. B 107, 7406–7413 (2003)

    Article  CAS  Google Scholar 

  69. Liu, W., Gao, X.: Reducing HAuCl(4) by the C(60) Dianion: C(60)-Directed self-assembly of gold nanoparticles into novel fullerene bound gold nanoassemblies. Nanotechnology 19, 405609 (2008)

    Article  Google Scholar 

  70. Kaminska, I., Das, M.R., Coffinier, Y., Niedziolka-Jonsson, J., Woisel, P., Opallo, M., Szunerits, S., Boukherroub, R.: Preparation of graphene/tetrathiafulvalene nanocomposite switchable surfaces. Chem. Commun. (Camb). 48, 1221–1223 (2012)

    Google Scholar 

  71. Kim, Y., Jeong, C., Lee, Y., Choi, S.: Synthesis and characterization of tetrathiafulvalene (TTF) and (X = Cl, NO 3 and hexafluoroacetylacetonate). Bull. Korean Chem. Soc. 23, 1754–1758 (2002)

    Article  CAS  Google Scholar 

  72. Kim, Y.I., Hatfield, W.E.: Electrical, magnetic and spectroscopic properties of teetrathiafulvalene charge transfer compounds with iron, ruthenium, rhodium and iridium halides. Inorganica Chim. Acta 188, 15–24 (1991)

    Article  CAS  Google Scholar 

  73. Baltrusaitis, J., Cwiertny, D.M., Grassian, V.H.: Adsorption of sulfur dioxide on hematite and goethite particle surfaces. Phys. Chem. Chem. Phys. 9, 5542 (2007)

    Article  CAS  Google Scholar 

  74. Naumkin, A.V., Kraut-Vass, A., Gaarenstroom, S.W., Powell, C.J.: NIST X-ray Photoelectron Spectroscopy Database. http://srdata.nist.gov/xps/

  75. Union, I., Pure, O.F., Chemistry, A.: The absolute electrode potential: an explanatory note (recommendations 1986). J. Electroanal. Chem. Interfacial Electrochem. 209, 417–428 (1986)

    Article  Google Scholar 

  76. Jeppesen, J.O., Nielsen, M.B., Becher, J.: Tetrathiafulvalene cyclophanes and cage molecules. Chem. Rev. 104, 5115–5131 (2004)

    Article  CAS  Google Scholar 

  77. Su, B., Girault, H.H.: Redox properties of self-assembled gold nanoclusters. J. Phys. Chem. B 109, 23925–23929 (2005)

    Article  CAS  Google Scholar 

  78. Subramanian, V., Wolf, E.E., Kamat, P.V.: Catalysis with TiO2/Gold nanocomposites. effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc. 126, 4943–4950 (2004)

    Article  CAS  Google Scholar 

  79. Scanlon, M.D.M., Peljo, P., Mendez, M.A., Smirnov, E.A., Girault, H.H., Méndez, M.A., Smirnov, E.A., Girault, H.H.: Charging and discharging at the nanoscale: fermi level equilibration of metallic nanoparticles. Chem. Sci. 6, 2705–2720 (2015)

    Article  CAS  Google Scholar 

  80. Adamczyk, Z., Weroński, P.: Application of the DLVO theory for particle deposition problems. Adv. Colloid Interface Sci. 83, 137–226 (1999)

    Article  CAS  Google Scholar 

  81. Binks, B.P.: Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 21–41 (2002)

    Article  CAS  Google Scholar 

  82. Patra, D., Sanyal, A., Rotello, V.M.: Colloidal microcapsules: self-assembly of nanoparticles at the liquid-liquid interface. Chem. Asian J. 5, 2442–2453 (2010)

    Article  CAS  Google Scholar 

  83. Milner, S.T., Joanny, J.F., Pincus, P.: Buckling of langmuir monolayers. Eur. Lett. 9, 495–500 (1989)

    Article  CAS  Google Scholar 

  84. Schwartz, H., Harel, Y., Efrima, S.: Surface behavior and buckling of silver interfacial colloid films. Langmuir 17, 3884–3892 (2001)

    Article  CAS  Google Scholar 

  85. Bresme, F., Oettel, M.: Nanoparticles at fluid interfaces. J. Phys.: Condens. Matter 19, 413101 (2007)

    CAS  Google Scholar 

  86. Hansen, F.K.: Surface-tension by image-analysis—fast and automatic measurements of pendant and sessile drops and bubbles. J. Colloid Interface Sci. 160, 209–217 (1993)

    Article  CAS  Google Scholar 

  87. Du, K., Glogowski, E., Emrick, T., Russell, T.P., Dinsmore, A.D.: Adsorption energy of nano- and microparticles at liquid-liquid interfaces. Langmuir 26, 12518–12522 (2010)

    Article  CAS  Google Scholar 

  88. Park, Y.-K., Park, S.: Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface. Chem. Mater. 20, 2388–2393 (2008)

    Article  CAS  Google Scholar 

  89. Lee, K.Y.C.: Collapse mechanisms of langmuir monolayers. Annu. Rev. Phys. Chem. 59, 771–791 (2008)

    Article  CAS  Google Scholar 

  90. Tchoreloff, P., Gulik, A., Denizot, B., Proust, J.E., Puisieux, F.: A structural study of interfacial phospholipid and lung surfactant layers by transmission electron microscopy after blodgett sampling: influence of surface pressure and temperature. Chem. Phys. Lipids 59, 151–165 (1991)

    Article  CAS  Google Scholar 

  91. Schultz, D.G., Lin, X.-M., Li, D., Gebhardt, J., Meron, M., Viccaro, P.J., Lin, B.: Structure, wrinkling, and reversibility of langmuir monolayers of gold nanoparticles. J. Phys. Chem. B 110, 24522–24529 (2006)

    Article  CAS  Google Scholar 

  92. Gopal, A., Lee, K.Y.C.: Morphology and collapse transitions in binary phospholipid monolayers. J. Phys. Chem. B 105, 10348–10354 (2001)

    Article  CAS  Google Scholar 

  93. Takamoto, D.Y., Lipp, M.M., von Nahmen, A, Lee, K.Y., Waring, A.J., Zasadzinski, J.A.: Interaction of lung surfactant proteins with anionic phospholipids. Biophys. J. 81, 153–169 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smirnov, E. (2018). Self-Assembly of Nanoparticles into Gold Metal Liquid-like Droplets (MeLLDs). In: Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-77914-0_3

Download citation

Publish with us

Policies and ethics