Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 490 Accesses

Abstract

This Chapter contains general introduction to electrochemistry at ITIES, including interfacial structure and thermodynamics of electron and ion transfer, as well as description of the concept of the Fermi level equilibration. Next, synthetic procedures, the structure of citrate-stabilized gold nanoparticles and implementation of “free electron gas” model to describe optical properties of metal NPs are considered. The Chapter ends with an extensive review on self-assembly of nano- and microparticles at liquid-liquid interfaces, including theoretical questions and potential applications of nanoparticle interfacial films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gavach, C.: Cinetique de l’Electroadsorption et de La Polarisation À l’Interface Entre Certaines Solutions Ioniques Non Miscibles. Experientia 18, 321–331 (1971)

    Google Scholar 

  2. Gavach, C., Henry, F.: Chronopotentiometric investigation of the diffusion overvoltage at the interface between two non-miscible solutions. J. Electroanal. Chem. Interfacial Electrochem. 54, 361–370 (1974)

    Article  CAS  Google Scholar 

  3. Gavach, C., Seta, P., Henry, F.: A study of the ionic transfer across an aqueous solution liquid membrane interface by chronopotentiometric and impedance measurements. Bioelectrochemistry Bioenerg. 1, 329–342 (1974)

    Article  CAS  Google Scholar 

  4. Gavach, C., Savajols, A.: Potentiels biioniques de membranes liquides fortement dissociees. Electrochim. Acta 19, 575–581 (1974)

    Article  CAS  Google Scholar 

  5. Samec, Z., Mareček, V., Koryta, J., Khalil, W.: Investigation of ion transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 83, 393–397 (1977)

    Article  CAS  Google Scholar 

  6. Koryta, J.: Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions. Electrochim. Acta 24, 293–300 (1979)

    Article  CAS  Google Scholar 

  7. Koryta, J., Br̆ezina, M., Hofmanová, A., Homolka, D., Hung, L.Q., Khalil, W., Mareček, V., Samec, Z., Sen, S.K., Vanýsek, P., et al.: 311–a new model of membrane transport: electrolysis at the interface of two immiscible electrolyte solutions. Bioelectrochemistry Bioenerg. 7, 61–68 (1980)

    Article  CAS  Google Scholar 

  8. Samec, Z., Mareček, V., Weber, J.: Charge transfer between two immiscible electrolyte solutions. J. Electroanal. Chem. Interfacial Electrochem. 103, 11–18 (1979)

    Article  CAS  Google Scholar 

  9. Samec, Z., Mareček, V., Weber, J.: Detection of an electron transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry with four-electrode system. J. Electroanal. Chem. Interfacial Electrochem. 96, 245–247 (1979)

    Article  Google Scholar 

  10. Samec, Z., Eugster, N., Fermin, D.J., Girault, H.H.: A generalised model for dynamic photocurrent responses at dye-sensitised liquid|liquid interfaces. J. Electroanal. Chem. 577, 323–337 (2005)

    Article  CAS  Google Scholar 

  11. Peljo, P.; Girault, H.H.: Electrochemistry at liquid/liquid interfaces. In: Encyclopedia of Analytical Chemistry. Wiley, Chichester, pp. 1–28 (2012)

    Google Scholar 

  12. Samec, Z.: Dynamic electrochemistry at the interface between two immiscible electrolytes. Electrochim. Acta 84, 21–28 (2012)

    Article  CAS  Google Scholar 

  13. Girault, H.H., Schiffrin, D.J.: Thermodynamic surface excess of water and ionic solvation at the interface between immiscible liquids. J. Electroanal. Chem. Interfacial Electrochem. 150, 43–49 (1983)

    Article  CAS  Google Scholar 

  14. Ibañez, D., Plana, D., Heras, A., Fermín, D.J., Colina, A.: Monitoring charge transfer at polarisable liquid/liquid interfaces employing time-resolved raman spectroelectrochemistry. Electrochem. Commun. 54, 14–17 (2015)

    Article  CAS  Google Scholar 

  15. Hatay, I., Su, B., Li, F., Méndez, M.A., Khoury, T., Gros, C.P., Barbe, J.-M., Ersoz, M., Samec, Z., Girault, H.H.: Proton-coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine. J. Am. Chem. Soc. 131, 13453–13459 (2009)

    Article  CAS  Google Scholar 

  16. Su, B., Hatay, I., Li, F., Partovi-Nia, R., Méndez, M.A., Samec, Z., Ersoz, M., Girault, H.H.: Oxygen reduction by Decamethylferrocene at liquid/liquid interfaces catalyzed by Dodecylaniline. J. Electroanal. Chem. 639, 102–108 (2010)

    Article  CAS  Google Scholar 

  17. Hatay, I., Su, B., Li, F., Partovi-Nia, R., Vrubel, H., Hu, X., Ersoz, M., Girault, H.H.: Hydrogen evolution at liquid-liquid interfaces. Angew. Chemie 48, 5139–5142 (2009)

    Article  CAS  Google Scholar 

  18. Nieminen, J.J., Hatay, I., Ge, P.-Y.P., Méndez, M.A., Murtomäki, L., Girault, H.H.: Hydrogen evolution catalyzed by electrodeposited nanoparticles at the liquid/liquid interface. Chem. Commun. 47, 5548–5550 (2011)

    Article  CAS  Google Scholar 

  19. Toth, P.S., Rodgers, A.N.J., Rabiu, A.K., Ibañez, D., Yang, J.X., Colina, A., Dryfe, R.A.W.: Interfacial doping of carbon nanotubes at the polarisable organic/water interface: a liquid/liquid pseudo-capacitor. J. Mater. Chem. A 4, 7365–7371 (2016)

    Article  CAS  Google Scholar 

  20. Sanchez Vallejo, L.J., Ovejero, J.M., Fernández, R.A., Dassie, S.A.: Simple ion transfer at liquid|liquid interfaces. Int. J. Electrochem. 2012, 1–34 (2012)

    Article  CAS  Google Scholar 

  21. Zhou, M., Gan, S., Zhong, L., Dong, X., Niu, L.: Which mechanism operates in the electron-transfer process at liquid/liquid interfaces? Phys. Chem. Chem. Phys. 13, 2774–2779 (2011)

    Article  CAS  Google Scholar 

  22. Deng, H., Jane Stockmann, T., Peljo, P., Opallo, M., Girault, H.H.: Electrochemical oxygen reduction at soft interfaces catalyzed by the transfer of hydrated lithium cations. J. Electroanal. Chem. 731, 28–35 (2014)

    Article  CAS  Google Scholar 

  23. Verwey, E.J.W., Niessen, K.F.: XL. The electrical double layer at the interface of two liquids. London, Edinburgh, Dublin Philos. Mag. J. Sci. 28, 435–446 (1939)

    Article  CAS  Google Scholar 

  24. Gavach, C., Seta, P., Epenoux, B.D.: The double layer and ion adsorption at the interface between two non miscible solutions. J. Electroanal. Chem. 83, 225–235 (1977)

    Article  CAS  Google Scholar 

  25. Benjamin, I.: Theoretical study of the water/1,2-dichloroethane interface: structure, dynamics, and conformational equilibria at the liquid–liquid interface. J. Chem. Phys. 97, 1432 (1992)

    Article  CAS  Google Scholar 

  26. Strutwolf, J., Barker, A.L., Gonsalves, M., Caruana, D.J., Unwin, P.R., Williams, D.E., Webster, J.R.: Probing liquid∣liquid interfaces using neutron reflection measurements and scanning electrochemical microscopy. J. Electroanal. Chem. 483, 163–173 (2000)

    Article  CAS  Google Scholar 

  27. Hou, B., Laanait, N., Yu, H., Bu, W., Yoon, J., Lin, B., Meron, M., Luo, G., Vanysek, P., Schlossman, M.L.: Ion distributions at the water/1,2-Dichloroethane interface: potential of mean force approach to analyzing X-Ray reflectivity and interfacial tension measurements. J. Phys. Chem. B 117, 5365–5378 (2013)

    Article  CAS  Google Scholar 

  28. Nagatani, H., Samec, Z., Brevet, P.-F., Fermin, D.J., Girault, H.H.: Adsorption and aggregation of Meso -Tetrakis(4-Carboxyphenyl)porphyrinato Zinc(II) at the Polarized Water|1,2-Dichloroethane interface. J. Phys. Chem. B 107, 786–790 (2003)

    Article  CAS  Google Scholar 

  29. Su, B., Abid, J.-P., Fermin, D.J., Girault, H.H., Hoffmannová, H., Krtil, P., Samec, Z.: Reversible voltage-induced assembly of Au nanoparticles at liquid/liquid interfaces. J. Am. Chem. Soc. 126, 915–919 (2004)

    Article  CAS  Google Scholar 

  30. Yu, H., Yzeiri, I., Hou, B., Chen, C.-H., Bu, W., Vanysek, P., Chen, Y., Lin, B., Král, P., Schlossman, M.L.: Electric field effect on phospholipid monolayers at an aqueous-organic liquid–liquid interface. J. Phys. Chem. B 119, 9319–9334 (2015)

    Article  CAS  Google Scholar 

  31. Bard, A.J., Faulkner, L.R.: Electrochemical methods: fundamentals and applications. In: Harris, D., Swain, E., Robey, C., Aillo, E. (eds.). Wiley, New York (2001)

    Google Scholar 

  32. Wilke, S., Zerihun, T.: Standard Gibbs energies of ion transfer across the Water∣2-Nitrophenyl Octyl Ether interface. J. Electroanal. Chem. 515, 611–614 (2001)

    Article  Google Scholar 

  33. Olaya, A.A.J., Ge, P.-Y., Girault, H.H.: Ion transfer across the Water|trifluorotoluene interface. Electrochem. Commun. 19, 101–104 (2012)

    Article  CAS  Google Scholar 

  34. Aminur Rahman, M., Doe, H.: Ion transfer of Tetraalkylammonium Cations at an interface between Frozen Aqueous solution and 1,2-Dichloroethane. J. Electroanal. Chem. 424, 159–164 (1997)

    Article  Google Scholar 

  35. Smirnov, E., Peljo, P., Scanlon, M.D., Girault, H.H.: Interfacial Redox Catalysis on Gold Nanofilms at soft interfaces. ACS Nano 9, 6565–6575 (2015)

    Article  CAS  Google Scholar 

  36. Peljo, P.: Proton transfer controlled reactions at liquid-liquid interfaces (2013)

    Google Scholar 

  37. Walden, P.: Organic solutions and ionisation means. internal friction and its connection with conductivity. Verwandtschaftslehre Zeitschrift Fur Phys. Chemie-Stochiometrie Und 55, 207–249 (1906)

    Google Scholar 

  38. Yaws, C.L.: Handbook of Thermodynamic and Physical Properties of Chemical Compounds. Knovel (2003)

    Google Scholar 

  39. ElectroChemical DataBase: Gibbs Energies of transfer. http://sbsrv7.epfl.ch/instituts/isic/lepa/cgi/DB/InterrDB.pl

  40. Scanlon, M.D.M., Peljo, P., Mendez, M.A., Smirnov, E.A., Girault, H.H., Méndez, M.A., Smirnov, E.A., Girault, H.H.: Charging and discharging at the nanoscale: fermi level equilibration of metallic nanoparticles. Chem. Sci. 6, 2705–2720 (2015)

    Article  CAS  Google Scholar 

  41. Su, B., Girault, H.H.: Redox properties of self-assembled gold nanoclusters. J. Phys. Chem. B 109, 23925–23929 (2005)

    Article  CAS  Google Scholar 

  42. Su, B., Girault, H.H.: Absolute standard redox potential of monolayer-protected gold nanoclusters. J. Phys. Chem. B 109, 11427–11431 (2005)

    Article  CAS  Google Scholar 

  43. Halas, S.: Ionization potential of large metallic clusters: explanation for the electrostatic paradox. Chem. Phys. Lett. 370, 300–301 (2003)

    Article  CAS  Google Scholar 

  44. Svanqvist, M., Hansen, K.: Non-Jellium scaling of metal cluster ionization energies and electron affinities. Eur. Phys. J. D 56, 199–203 (2010)

    Article  CAS  Google Scholar 

  45. Brown, C.M., Tilford, S.G., Ginter, M.L.: Absorption spectrum of Au I between 1300 and 1900 A. J. Opt. Soc. Am. 68, 243–246 (1978)

    Article  CAS  Google Scholar 

  46. Girault, H.H.: Analytical and Physical Electrochemistry. EPFL Press, Lausanne (2004)

    Book  Google Scholar 

  47. Su, B., Zhang, M., Shao, Y., Girault, H.H.: Solvent effect on redox properties of Hexanethiolate Monolayer-Protected gold nanoclusters. J. Phys. Chem. B 110, 21460–21466 (2006)

    Article  CAS  Google Scholar 

  48. Novo, C., Funston, A.M., Gooding, A.K., Mulvaney, P.: Electrochemical charging of single gold nanorods. J. Am. Chem. Soc. 131, 14664–14666 (2009)

    Article  CAS  Google Scholar 

  49. Plieth, W.J.: Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced raman scattering. J. Phys. Chem. 86, 3166–3170 (1982)

    Article  CAS  Google Scholar 

  50. Henglein, A.: Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873 (1989)

    Article  CAS  Google Scholar 

  51. Henglein, A.: Physichochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 97, 5457–5471 (1993)

    Article  CAS  Google Scholar 

  52. Lipkowski, J., Schmickler, W., Kolb, D., Parsons, R.: Comments on the thermodynamics of solid electrodes. J. Electroanal. Chem. 452, 193–197 (1998)

    Article  CAS  Google Scholar 

  53. Lee, D.K., Park, S.Il, Lee, J.K., Hwang, N.M.: A theoretical model for digestive ripening. Acta Mater. 55, 5281–5288 (2007)

    Article  CAS  Google Scholar 

  54. Ivanova, O.S., Zamborini, F.P.: Size – dependent electrochemical oxidation of silver nanoparticles. J. Am. Chem. Soc. 132, 70–72 (2010)

    Article  CAS  Google Scholar 

  55. Ivanova, O.S., Zamborini, F.P.: Electrochemical size discrimination of gold nanoparticles attached to Glass/indium-Tin-Oxide electrodes by oxidation in bromide-containing electrolyte. Anal. Chem. 82, 5844–5850 (2010)

    Article  CAS  Google Scholar 

  56. Masitas, R.A., Zamborini, F.P.: Oxidation of highly unstable 4 Nm diameter gold nanoparticles 850 mV negative of the bulk oxidation potential. J. Am. Chem. Soc. 134, 5014–5017 (2012)

    Article  CAS  Google Scholar 

  57. Pietron, J.J., Hicks, J.F., Murray, R.W.: Using electrons stored on quantized capacitors in electron transfer reactions. J. Am. Chem. Soc. 121, 5565–5570 (1999)

    Article  CAS  Google Scholar 

  58. Ung, T., Giersig, M., Dunstan, D., Mulvaney, P.: Spectroelectrochemistry of colloidal silver. Langmuir 13, 1773–1782 (1997)

    Article  CAS  Google Scholar 

  59. Stuart, E.J.E., Zhou, Y., Rees, N.V., Compton, R.G.: Particle-impact nanoelectrochemistry: a fickian model for nanoparticle transport. RSC Adv. 2, 12702 (2012)

    Article  CAS  Google Scholar 

  60. Zhou, Y.-G., Rees, N.V., Pillay, J., Tshikhudo, R., Vilakazi, S., Compton, R.G.: Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. Chem. Commun. 48, 224 (2012)

    Article  CAS  Google Scholar 

  61. Haddou, B., Rees, N.V., Compton, R.G.: Nanoparticle–electrode impacts: the oxidation of copper nanoparticles has slow kinetics. Phys. Chem. Chem. Phys. 14, 13612 (2012)

    Article  CAS  Google Scholar 

  62. German, S.R., Hurd, T.S., White, H.S., Mega, T.L.: Sizing individual Au nanoparticles in solution with sub-nanometer resolution. ACS Nano 150623081920006 (2015)

    Google Scholar 

  63. Edwards, M.A., German, S.R., Dick, J.E., Bard, A.J., White, H.S.: High-speed multipass coulter counter with ultrahigh resolution. ACS Nano (2015)

    Google Scholar 

  64. Xiao, X., Bard, A.J.: Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 129, 9610–9612 (2007)

    Article  CAS  Google Scholar 

  65. Xiao, Y., Fan, F.R.F., Zhou, J., Bard, A.J.: Current transients in single nanoparticle collision events. J. Am. Chem. Soc. 130, 16669–16677 (2008)

    Article  CAS  Google Scholar 

  66. Kwon, S.J., Fan, F.-R.F., Bard, A.J.: Observing Iridium Oxide (IrO X) single nanoparticle collisions at ultramicroelectrodes. J. Am. Chem. Soc. 132, 13165–13167 (2010)

    Article  CAS  Google Scholar 

  67. Chen, C., Ravenhill, E.R., Momotenko, D., Kim, Y.-R., Lai, S.C.S., Unwin, P.R.: Impact of surface chemistry on nanoparticle-electrode interactions in the electrochemical detection of nanoparticle collisions. Langmuir 151008185635003 (2015)

    Google Scholar 

  68. Lim, C.S., Tan, S.M., Sofer, Z., Pumera, M.: Impact electrochemistry of layered transition metal Dichalcogenides. ACS Nano 9, 8474–8483 (2015)

    Article  CAS  Google Scholar 

  69. Kissling, G.P., Miles, D.O., Fermín, D.J.: Electrochemical charge transfer mediated by metal nanoparticles and quantum dots. Phys. Chem. Chem. Phys. 13, 21175 (2011)

    Article  CAS  Google Scholar 

  70. Kim, J., Kim, B.K., Cho, S.K., Bard, A.J.: Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions. J. Am. Chem. Soc. 136, 8173–8176 (2014)

    Article  CAS  Google Scholar 

  71. Hill, C.M., Kim, J., Bard, A.J.: Electrochemistry at a metal nanoparticle on a tunneling film: a steady-state model of current densities at a tunneling ultramicroelectrode. J. Am. Chem. Soc. 137, 11321–11326 (2015)

    Article  CAS  Google Scholar 

  72. Spiro, M.: Heterogeneous catalysis in solution. Part 17.—kinetics of oxidation–reduction reaction catalysed by electron transfer through the solid: an electrochemical treatment. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 75, 1507 (1979)

    Article  CAS  Google Scholar 

  73. Miller, D.S., Bard, A.J., Mclendon, G., Fergusont, J.: Catalytic Water reduction at colloidal metal “Microelectrodes”. 2. Theory and experiment. J. Am. Chem. Soc. 103, 5336–5341 (1981)

    Article  CAS  Google Scholar 

  74. Turkevich, J., Stevenson, P.C., Hillie, J.: A Study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 75–82 (1951)

    Article  Google Scholar 

  75. Frens, G.: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20–22 (1973)

    Article  CAS  Google Scholar 

  76. Ji, X., Song, X., Li, J., Bai, Y., Yang, W., Peng, X.: Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 129, 13939–13948 (2007)

    Article  CAS  Google Scholar 

  77. Kumar, S., Gandhi, K.S., Kumar, R.: Modeling of formation of gold nanoparticles by citrate method †. Ind. Eng. Chem. Res. 46, 3128–3136 (2007)

    Article  CAS  Google Scholar 

  78. Wuithschick, M., Birnbaum, A., Witte, S., Sztucki, M., Vainio, U., Pinna, N., Rademann, K., Emmerling, F., Kraehnert, R., Polte, J.: Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. ACS Nano 9, 7052–7071 (2015)

    Article  CAS  Google Scholar 

  79. Park, Y.-K., Park, S.: Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface. Chem. Mater. 20, 2388–2393 (2008)

    Article  CAS  Google Scholar 

  80. Fievet, F., Lagier, J.P., Figlarz, M.: Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bull. 14, 29–34 (1989)

    Article  CAS  Google Scholar 

  81. Li, C., Cai, W., Cao, B., Sun, F., Li, Y., Kan, C., Zhang, L.: Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Adv. Funct. Mater. 16, 83–90 (2006)

    Article  CAS  Google Scholar 

  82. Li, C., Shuford, K.L., Chen, M., Lee, E.J., Cho, S.O.: A facile polyol route to uniform gold Octahedra with Tailorable size and their optical properties. ACS Nano 2, 1760–1769 (2008)

    Article  CAS  Google Scholar 

  83. Goldmann, C., Lazzari, R., Paquez, X., Boissière, C., Ribot, F., Sanchez, C., Chanéac, C., Portehault, D.: Charge transfer at hybrid interfaces: Plasmonics of Aromatic Thiol-Capped gold nanoparticles. ACS Nano 9, 7572–7582 (2015)

    Article  CAS  Google Scholar 

  84. Duan, H., Wang, D., Kurth, D.G., Mohwald, H.: Directing self-assembly of nanoparticles at water/oil interfaces. Angew. Chemie Int. Ed. 116, 5757–5760 (2004)

    Article  Google Scholar 

  85. Song, J., Pu, L., Zhou, J., Duan, B., Duan, H.: Biodegradable Theranostic Plasmonic vesicles of amphiphilic gold nanorods. ACS Nano 7, 9947–9960 (2013)

    Article  CAS  Google Scholar 

  86. Cheng, L., Liu, A., Peng, S., Duan, H.: Responsive plasmonic assemblies of amphiphilic nanocrystals at oil-water interfaces. ACS Nano 4, 6098–6104 (2010)

    Article  CAS  Google Scholar 

  87. Chow, M., Zukoski, C.: Gold sol formation mechanisms: role of colloidal stability. J. Colloid Interface Sci. 165, 97–109 (1994)

    Article  CAS  Google Scholar 

  88. Rodríguez-González, B., Mulvaney, P., Liz-Marzán, L.M.: An electrochemical model for gold colloid formation via citrate reduction. Zeitschrift für Phys. Chemie 221, 415–426 (2007)

    Article  CAS  Google Scholar 

  89. Engelbrekt, C., Jensen, P.S., Sørensen, K.H., Ulstrup, J., Zhang, J.: Complexity of gold nanoparticle formation disclosed by dynamics study. J. Phys. Chem. C 117, 11818–11828 (2013)

    Article  CAS  Google Scholar 

  90. Grasseschi, D., Ando, R.A., Toma, H.E., Zamarion, V.M.: Unraveling the nature of Turkevich gold nanoparticles: the unexpected role of the Dicarboxyketone species. RSC Adv. 5, 5716–5724 (2015)

    Article  CAS  Google Scholar 

  91. Booth, S.G., Uehara, A., Chang, S.Y., Mosselmans, J.F.W., Schroeder, S.L.M., Dryfe, R.A.W.: Gold deposition at a free-standing liquid/liquid interface: evidence for the formation of Au(I) by microfocus X-Ray spectroscopy (μXRF and μXAFS) and cyclic voltammetry. J. Phys. Chem. C 119, 16785–16792 (2015)

    Article  CAS  Google Scholar 

  92. Ojea-Jiménez, I., Campanera, J.: Molecular modeling of the reduction mechanism in the Citrate-Mediated synthesis of gold nanoparticles. J. Phys. Chem. C 116, 23682–23691 (2012)

    Article  CAS  Google Scholar 

  93. Drude, P.: Zur Elektronentheorie Der Metalle. Ann. Phys. 306, 566–613 (1900)

    Article  Google Scholar 

  94. Drude, P.: Zur Elektronentheorie Der Metalle; II. Teil. Galvanomagnetische Und Thermomagnetische Effecte. Ann. Phys. 308, 369–402 (1900)

    Article  Google Scholar 

  95. Myers, H.P.: Introductory Solid State Physics, 2nd edn. CRC Press, London (1997)

    Google Scholar 

  96. Kittel, C.: Introduction to Solid State Physics. 8th edn. Wiley, New York (2004)

    Google Scholar 

  97. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  CAS  Google Scholar 

  98. Moskovits, M., Srnová-Šloufová, I., Vlčková, B.: Bimetallic Ag–Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 116, 10435 (2002)

    Article  CAS  Google Scholar 

  99. Polyanskiy, M.N.: Refractive index database. http://refractiveindex.info/

  100. Rakic, A.D., Djurisic, A.B., Elazar, J.M., Majewski, M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998)

    Article  CAS  Google Scholar 

  101. Olmon, R.L., Slovick, B., Johnson, T.W., Shelton, D., Oh, S.-H., Boreman, G.D., Raschke, M.B.: Optical dielectric function of gold. Phys. Rev. B 86, 235147 (2012)

    Article  CAS  Google Scholar 

  102. Palik, E.D. (ed.) The Handbook of Optical Constants of Solids. Academic Press, New York (1985)

    Google Scholar 

  103. Mie, G.: Beitrage Zur Optik Truber Medien. Speziell Kolloidaler Metllosungen. Ann. Phys. 25, 377–445 (1908)

    CAS  Google Scholar 

  104. Guillaume, B.: Mie theory for metal nanoparticles, 1–2 (2012)

    Google Scholar 

  105. Myroshnychenko, V., Rodríguez-Fernández, J., Pastoriza-Santos, I., Funston, A.M., Novo, C., Mulvaney, P., Liz-Marzán, L.M., García de Abajo, F.J.: Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792–1805 (2008)

    Article  CAS  Google Scholar 

  106. Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer Series in Materials Science. Springer, Berlin, vol. 25 (1995)

    Book  Google Scholar 

  107. Amendola, V., Meneghetti, M.: Size evaluation of gold nanoparticles by uv − vis spectroscopy. J. Phys. Chem. C 113, 4277–4285 (2009)

    Article  CAS  Google Scholar 

  108. Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

    Article  CAS  Google Scholar 

  109. Yang, Z., Chen, S., Fang, P., Ren, B., Girault, H.H., Tian, Z.: LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface. Phys. Chem. Chem. Phys. 15, 5374–5378 (2013)

    Article  CAS  Google Scholar 

  110. Zapata Herrera, M., Aizpurua, J., Kazansky, A.K., Borisov, A.G.: Plasmon response and electron dynamics in charged metallic nanoparticles. Langmuir 32, 2829–2840 (2016)

    Article  CAS  Google Scholar 

  111. Cirri, A., Silakov, A., Jensen, L., Lear, B.J.: Probing ligand-induced modulation of metallic states in small gold nanoparticles using conduction electron spin resonance. Phys. Chem. Chem. Phys. 18, 25443–25451 (2016)

    Article  CAS  Google Scholar 

  112. Novo, C., Funston, A.M., Mulvaney, P.: Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 3, 598–602 (2008)

    Article  CAS  Google Scholar 

  113. Ung, T., Liz-Marzán, L.M., Mulvaney, P.: Optical properties of thin films of Au@SiO 2 particles. J. Phys. Chem. B 105, 3441–3452 (2001)

    Article  CAS  Google Scholar 

  114. Ung, T., Liz-Marzán, L.M., Mulvaney, P.: Gold nanoparticle thin films. Colloids Surfaces A Physicochem. Eng. Asp. 202, 119–126 (2002)

    Article  CAS  Google Scholar 

  115. Jung, H., Cha, H., Lee, D., Yoon, S.: Bridging the nanogap with light: continuous tuning of plasmon coupling between gold nanoparticles. ACS Nano 9, 12292–12300 (2015)

    Article  CAS  Google Scholar 

  116. Grouchko, M., Roitman, P., Zhu, X., Popov, I., Kamyshny, A., Su, H., Magdassi, S.: Merging of metal nanoparticles driven by selective wettability of silver nanostructures. Nat. Commun. 5, 2994 (2014)

    Article  CAS  Google Scholar 

  117. Lange, H., Juárez, B.H., Carl, A., Richter, M., Bastús, N.G., Weller, H., Thomsen, C., von Klitzing, R., Knorr, A.: Tunable plasmon coupling in distance-controlled gold nanoparticles. Langmuir 28, 8862–8866 (2012)

    Article  CAS  Google Scholar 

  118. Ramsden, W.: Separation of solids in the surface-layers of solutions and “suspensions” (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). – preliminary account. Proc. R. Soc. London 72, 156–164 (1903)

    Article  CAS  Google Scholar 

  119. Pickering, S.U.: CXCVI. emulsions. J. Chem. Soc. Trans. 1907, 91 (2001)

    Google Scholar 

  120. Binks, B.P.: Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 21–41 (2002)

    Article  CAS  Google Scholar 

  121. Bormashenko, E.: Liquid marbles: properties and applications. Curr. Opin. Colloid Interface Sci. 16, 266–271 (2011)

    Article  CAS  Google Scholar 

  122. Bresme, F., Oettel, M.: Nanoparticles at fluid interfaces. J. Phys. Condens. Matter 19, 413101 (2007)

    Article  CAS  Google Scholar 

  123. Edel, J.B., Kornyshev, A.A., Kucernak, A.R., Urbakh, M.: Fundamentals and applications of self-assembled Plasmonic nanoparticles at interfaces. Chem. Soc. Rev. 45, 1581–1596 (2016)

    Article  CAS  Google Scholar 

  124. Pieranski, P.: Two-dimensional interfacial colloidal crystals. Phys. Rev. Lett. 45, 569–572 (1980)

    Article  CAS  Google Scholar 

  125. Johans, C., Liljeroth, P., Kontturi, K.: Electrodeposition at polarisable liquid|liquid interfaces: the role of interfacial tension on nucleation kinetics. Phys. Chem. Chem. Phys. 4, 1067–1071 (2002)

    Article  CAS  Google Scholar 

  126. Denkov, N., Ivanov, I., Kralchevsky, P., Wasan, D.: A possible mechanism of stabilization of emulsions by solid particles. J. Colloid Interface Sci. 150, 589–593 (1992)

    Article  CAS  Google Scholar 

  127. Hunter, T.N., Pugh, R.J., Franks, G.V., Jameson, G.J.: The role of particles in stabilising foams and emulsions. Adv. Colloid Interface Sci. 137, 57–81 (2008)

    Article  CAS  Google Scholar 

  128. Flatte, M.E., Kornyshev, A.A., Urbakh, M.: Giant stark effect in quantum dots at liquid/liquid interfaces: a new option for tunable optical filters. Proc. Natl. Acad. Sci. USA 105, 18212–18214 (2008)

    Article  CAS  Google Scholar 

  129. Flatte, M.E., Kornyshev, A.A., Urbakh, M.: Electrovariable nanoplasmonics and self-assembling smart mirrors. J. Phys. Chem. C 114, 1735–1747 (2010)

    Article  CAS  Google Scholar 

  130. Flatté, M.E., Kornyshev, A.A., Urbakh, M.: Understanding voltage-induced localization of nanoparticles at a liquid–liquid interface. J. Phys. Condens. Matter 20, 73102 (2008)

    Article  CAS  Google Scholar 

  131. Aveyard, R., Clint, J.: Particle wettability and line tension. J. Chem. Soc. Faraday Trans. 92, 85–89 (1996)

    Article  CAS  Google Scholar 

  132. Aveyard, R., Beake, B.D., Clint, J.H.: Wettability of spherical particles at liquid surfaces. J. Chem. Soc. Faraday Trans. 92, 4271 (1996)

    Article  CAS  Google Scholar 

  133. Aveyard, R., Clint, J.H., Nees, D.: Small solid particles and liquid lenses at fluid/fluid interfaces. Colloid Polym. Sci. 278, 155–163 (2000)

    Article  CAS  Google Scholar 

  134. Widom, B.: Line tension and the shape of a sessile drop. J. Phys. Chem. 99, 2803–2806 (1995)

    Article  CAS  Google Scholar 

  135. Bresme, F., Quirke, N.: Computer simulation study of the wetting behavior and line tensions of nanometer size particulates at a liquid-vapor interface. Phys. Rev. Lett. 80, 3791–3794 (1998)

    Article  CAS  Google Scholar 

  136. Faraudo, J., Bresme, F.: Stability of particles adsorbed at liquid/fluid interfaces: shape effects induced by line tension. J. Chem. Phys. 118, 6518–6528 (2003)

    Article  CAS  Google Scholar 

  137. Kontturi, K., Manzanares, J., Murtomäki, L.: Effect of concentration polarization on the current-voltage characteristics of ion transfer across ities. Electrochim. Acta 40, 2979–2984 (1995)

    Article  CAS  Google Scholar 

  138. Manzanares, J.A., Allen, R.M., Kontturi, K.: Enhanced ion transfer rate due to the presence of zwitterionic phospholipid monolayers at the ITIES. J. Electroanal. Chem. 483, 188–196 (2000)

    Article  CAS  Google Scholar 

  139. Verwey, E., Overbeek, J.: Theory of the Stability of Lyophobic Colloids. Elsevier Publishing Company, Inc. (1948)

    Google Scholar 

  140. Adamczyk, Z., Weroński, P.: Application of the DLVO theory for particle deposition problems. Adv. Colloid Interface Sci. 83, 137–226 (1999)

    Article  CAS  Google Scholar 

  141. Reincke, F., Kegel, W.K., Zhang, H., Nolte, M., Wang, D., Vanmaekelbergh, D., Mohwald, H.: Understanding the self-assembly of charged nanoparticles at the water/oil interface. Phys. Chem. Chem. Phys. 8, 3828–3835 (2006)

    Article  CAS  Google Scholar 

  142. Uzi, A., Ostrovski, Y., Levy, A.: Modeling and simulation of particles in gas-liquid interface. Adv. Powder Technol. 27, 112–123 (2016)

    Article  Google Scholar 

  143. Lehle, H., Oettel, M.: Importance of boundary conditions for fluctuation-induced forces between colloids at interfaces. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 75, 1–18 (2007)

    Google Scholar 

  144. Lehle, H., Oettel, M., Dietrich, S.: Effective forces between colloids at interfaces induced by capillary wavelike fluctuations. Eur. Lett. 75, 174–180 (2006)

    Article  CAS  Google Scholar 

  145. McBride, S.P., Law, B.M.: Influence of line tension on spherical colloidal particles at liquid-vapor interfaces. Phys. Rev. Lett. 109, 1–5 (2012)

    Google Scholar 

  146. Snoeyink, C., Barman, S., Christopher, G.F.: Contact angle distribution of particles at fluid interfaces. Langmuir 31, 891–897 (2015)

    Article  CAS  Google Scholar 

  147. Maestro, A., Guzmán, E., Ortega, F., Rubio, R.G.: Contact angle of micro- and nanoparticles at fluid interfaces. Curr. Opin. Colloid Interface Sci. 1–13 (2014)

    Google Scholar 

  148. Isa, L., Lucas, F., Wepf, R., Reimhult, E.: Measuring single-nanoparticle wetting properties by freeze-fracture shadow-casting cryo-scanning electron microscopy. Nat. Commun. 2, 438 (2011)

    Article  CAS  Google Scholar 

  149. Velankar, S.S.: A non-equilibrium state diagram for liquid/fluid/particle mixtures. Soft Matter 11, 8393–8403 (2015)

    Article  CAS  Google Scholar 

  150. Aussillous, P., Quéré, D.: Liquid marbles. Nature 411, 924–927 (2001)

    Article  CAS  Google Scholar 

  151. McHale, G., Newton, M.I.: Liquid marbles: principles and applications. Soft Matter 7, 5473 (2011)

    Article  CAS  Google Scholar 

  152. Bormashenko, E., Pogreb, R., Balter, R., Gendelman, O., Aurbach, D.: Composite non-stick droplets and their actuation with electric field. Appl. Phys. Lett. 100, 10–14 (2012)

    Article  CAS  Google Scholar 

  153. Zhao, Y., Fang, J., Wang, H., Wang, X., Lin, T.: magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv. Mater. 22, 707–710 (2010)

    Article  CAS  Google Scholar 

  154. Bormashenko, E.: New insights into liquid marbles. Soft Matter 8, 11018–11021 (2012)

    Article  CAS  Google Scholar 

  155. Fujii, S., Sawada, S., Nakayama, S., Kappl, M., Ueno, K., Shitajima, K., Butt, H.-J., Nakamura, Y.: Pressure-sensitive adhesive powder. Mater. Horiz. 3, 47–52 (2016)

    Article  CAS  Google Scholar 

  156. Paven, M., Mayama, H., Sekido, T., Butt, H.J., Nakamura, Y., Fujii, S.: Light-driven delivery and release of materials using liquid marbles. Adv. Funct. Mater. 3199–3206 (2016)

    Article  CAS  Google Scholar 

  157. Lee, H.K., Lee, Y.H., Phang, I.Y., Wei, J., Miao, Y.-E., Liu, T., Ling, X.Y.: Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection. Angew. Chemie 126, 5154–5158 (2014)

    Article  Google Scholar 

  158. Reincke, F., Hickey, S.G., Kegel, W.K., Vanmaekelbergh, D.: Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew. Chemie Int. Ed. 43, 458–462 (2004)

    Article  CAS  Google Scholar 

  159. Vazquez, G., Alvarez, E., Navaza, J.M.: Surface tension of alcohol water + water from 20 to 50.degree.C. J. Chem. Eng. Data 40, 611–614 (1995)

    Article  CAS  Google Scholar 

  160. Luo, M., Song, Y., Dai, L.L.: Effects of methanol on nanoparticle self-assembly at liquid-liquid interfaces: a molecular dynamics approach. J. Chem. Phys. 131, 194703 (2009)

    Article  CAS  Google Scholar 

  161. Li, Y.-J., Huang, W.-J., Sun, S.-G.: A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface. Angew. Chemie 118, 2599–2601 (2006)

    Article  Google Scholar 

  162. Arumugam, P., Patra, D., Samanta, B., Agasti, S.S., Subramani, C., Rotello, V.M.: Self-assembly and cross-linking of FePt nanoparticles at planar and colloidal liquid-liquid interfaces. J. Am. Chem. Soc. 130, 10046–10047 (2008)

    Article  CAS  Google Scholar 

  163. Guo, P., Sikdar, D., Huang, X., Si, K.J., Su, B., Chen, Y., Xiong, W., Yap, L.W., Premaratne, M., Cheng, W.: Large-scale self-assembly and stretch-induced plasmonic properties of core–shell metal nanoparticle superlattice sheets. J. Phys. Chem. C (2014)

    Google Scholar 

  164. Xia, H., Wang, D.: Fabrication of macroscopic freestanding films of metallic nanoparticle monolayers by interfacial self-assembly. Adv. Mater. 20, 4253–4256 (2008)

    Article  CAS  Google Scholar 

  165. Younan, N., Hojeij, M., Ribeaucourt, L., Girault, H.H.: Electrochemical properties of gold nanoparticles assembly at polarised liquid|liquid interfaces. Electrochem. Commun. 12, 912–915 (2010)

    Article  CAS  Google Scholar 

  166. Fang, P.-P., Chen, S., Deng, H., Scanlon, M.D., Gumy, F., Lee, H.J., Momotenko, D., Amstutz, V., Cortés-Salazar, F., Pereira, C.M., et al.: Conductive gold nanoparticle mirrors at liquid/liquid interfaces. ACS Nano 7, 9241–9248 (2013)

    Article  CAS  Google Scholar 

  167. Hojeij, M., Younan, N., Ribeaucourt, L., Girault, H.H.: Surface plasmon resonance of gold nanoparticles assemblies at liquid | liquid interfaces. Nanoscale 2, 1665–1669 (2010)

    Article  Google Scholar 

  168. Meyer, M., Ru Le, E.C., Etchegoin, P.G.: Self-limiting aggregation leads to long-lived metastable clusters in colloidal solutions. J. Phys. Chem. B 110, 6040–6047 (2006)

    Article  CAS  Google Scholar 

  169. Konrad, M.P., Doherty, A.P., Bell, S.E.J.: Stable and uniform SERS signals from self-assembled two-dimensional interfacial arrays of optically coupled ag nanoparticles. Anal. Chem. 85, 6783–6789 (2013)

    Article  CAS  Google Scholar 

  170. Xu, Y., Konrad, M.P., Lee, W.W.Y., Ye, Z., Bell, S.E.J.: A method for promoting assembly of metallic and nonmetallic nanoparticles into interfacial monolayer films. Nano Lett. 16, 5255–5260 (2016)

    Article  CAS  Google Scholar 

  171. Turek, V.A., Cecchini, M.P., Paget, J., Kucernak, A.R., Kornyshev, A.A., Edel, J.B.: Plasmonic ruler at the liquid-liquid interface. ACS Nano 6, 7789–7799 (2012)

    Article  CAS  Google Scholar 

  172. Cecchini, M.P., Turek, V.A., Paget, J., Kornyshev, A.A., Edel, J.B.: Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 12, 165–171 (2012)

    Article  CAS  Google Scholar 

  173. Turek, V.A., Elliott, L.N., Tyler, A.I.I., Demetriadou, A., Paget, J., Cecchini, M.P., Kucernak, A.R., Kornyshev, A.A., Edel, J.B.: Self-assembly and applications of ultraconcentrated nanoparticle solutions. ACS Nano 7, 8753–8759 (2013)

    Article  CAS  Google Scholar 

  174. Turek, V.A., Francescato, Y., Cadinu, P., Crick, C.R., Elliott, L., Chen, Y., Urland, V., Ivanov, A.P., Velleman, L., Hong, M., et al.: Self-assembled spherical supercluster metamaterials from nanoscale building blocks. ACS Photonics 3, 35–42 (2016)

    Article  CAS  Google Scholar 

  175. Wang, D., Tejerina, B., Lagzi, I., Kowalczyk, B., Grzybowski, B.A.: Bridging interactions and selective nanoparticle aggregation mediated by monovalent cations. ACS Nano, 5, 530–536 (2011)

    Article  CAS  Google Scholar 

  176. Cecchini, M.P., Turek, V.A., Demetriadou, A., Britovsek, G., Welton, T., Kornyshev, A.A., Wilton-Ely, J.D.E.T., Edel, J.B.: Heavy metal sensing using self-assembled nanoparticles at a liquid-liquid interface. Adv. Opt. Mater. 2, 966–977 (2014)

    Article  CAS  Google Scholar 

  177. Nalawade, P., Mukherjee, T., Kapoor, S.: Versatile film formation and phase transfer of gold nanoparticles by changing the polarity of the media. Mater. Chem. Phys. 136, 460–465 (2012)

    Article  CAS  Google Scholar 

  178. Luo, M., Olivier, G.K., Frechette, J.: Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oil–water interface. Soft Matter 8, 11923 (2012)

    Article  CAS  Google Scholar 

  179. Sashuk, V., Winkler, K., Żywociński, A., Wojciechowski, T., Górecka, E., Fiałkowski, M.: Nanoparticles in a capillary trap: dynamic self-assembly at fluid interfaces. ACS Nano 7, 8833–8839 (2013)

    Article  CAS  Google Scholar 

  180. Peng, L., You, M., Wu, C., Han, D., Öçsoy, I., Chen, T., Chen, Z., Tan, W.: Reversible phase transfer of nanoparticles based on photoswitchable host-guest chemistry. ACS Nano 8, 2555–2561 (2014)

    Article  CAS  Google Scholar 

  181. Kowalczyk, B., Apodaca, M.M., Nakanishi, H., Smoukov, S.K., Grzybowski, B.A.: Lift-off and micropatterning of mono- and multilayer nanoparticle films. Small, 5, 1970–1973 (2009)

    Article  CAS  Google Scholar 

  182. Le Ouay, B., Guldin, S., Luo, Z., Allegri, S., Stellacci, F.: Freestanding ultrathin nanoparticle membranes assembled at transient liquid-liquid interfaces. Adv. Mater. Interfaces, 1–8 (2016)

    Google Scholar 

  183. Yogev, D., Efrima, S.: Novel silver metal liquidlike films. J. Phys. Chem. 92, 5754–5760 (1988)

    Article  CAS  Google Scholar 

  184. Yen, Y., Lu, T., Lee, Y., Yu, C., Tsai, Y., Tseng, Y., Chen, H.: Highly reflective liquid mirrors: exploring the effects of localized surface plasmon resonance and the arrangement of nanoparticles on metal liquid-like films. ACS Appl. Mater. Interfaces 6, 4292–4300 (2014)

    Article  CAS  Google Scholar 

  185. Borra, E.F., Seddiki, O., Angel, R., Eisenstein, D., Hickson, P., Seddon, K.R., Worden, S.P.: Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447, 979–981 (2007)

    Article  CAS  Google Scholar 

  186. Yockell-Lelièvre, H., Borra, E.F., Ritcey, A.M., Vieira da Silva, L.: Optical Tests of nanoengineered liquid mirrors. Appl. Opt. 42, 1882–1887 (2003)

    Article  Google Scholar 

  187. Gingras, J., Déry, J.-P., Yockell-Lelièvre, H., Borra, E.F., Ritcey, A.M.: Surface films of silver nanoparticles for new liquid mirrors. Colloids Surfaces A Physicochem. Eng. Asp. 279, 79–86 (2006)

    Article  CAS  Google Scholar 

  188. Déry, J.-P., Borra, E.F., Ritcey, A.M.: Ethylene Glycol based Ferrofluid for the fabrication of magnetically deformable liquid mirrors. Chem. Mater. 20, 6420–6426 (2008)

    Article  CAS  Google Scholar 

  189. Bucaro, M.A., Kolodner, P.R., Taylor, J.A., Sidorenko, A., Aizenberg, J., Krupenkin, T.N.: Tunable liquid optics: electrowetting-controlled liquid mirrors based on self-assembled janus tiles. Langmuir, 25, 3876–3879 (2009)

    Article  CAS  Google Scholar 

  190. Paget, J., Walpole, V., Blancafort Jorquera, M., Edel, J.B., Urbakh, M., Kornyshev, A.A., Demetriadou, A.: Optical properties of ordered self-assembled nanoparticle arrays at interfaces. J. Phys. Chem. C 140925151957002 (2014)

    Google Scholar 

  191. Scanlon, M.D., Smirnov, E., Stockmann, T.J., Peljo, P.: Gold nanofilms at liquid − liquid interfaces: an emerging platform for redox electrocatalysis, nanoplasmonic sensors, and electrovariable optics. Chem. Rev. (2018)

    Google Scholar 

  192. Abid, J.-P., Abid, M., Bauer, C., Girault, H.H., Brevet, P.-F.: Controlled reversible adsorption of core-shell metallic nanoparticles at the polarized Water/1,2-Dichloroethane interface investigated by optical second-harmonic generation. J. Phys. Chem. C 111, 8849–8855 (2007)

    Article  CAS  Google Scholar 

  193. Bera, M.K., Chan, H., Moyano, D.F., Yu, H., Tatur, S., Amoanu, D., Bu, W., Rotello, V.M., Meron, M., Král, P., et al.: Interfacial localization and voltage-tunable arrays of charged nanoparticles. Nano Lett. 14, 6816–6822 (2014)

    Article  CAS  Google Scholar 

  194. Millyard, M.G., Min Huang, F., White, R., Spigone, E., Kivioja, J., Baumberg, J.J.: Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats. Appl. Phys. Lett. 100, 73101 (2012)

    Article  CAS  Google Scholar 

  195. Weber, M.L., Litz, J.P., Masiello, D.J., Willets, K.A.: Super-resolution imaging reveals a difference between SERS and luminescence centroids. ACS Nano, 6, 1839–1848 (2012)

    Article  CAS  Google Scholar 

  196. Kleinman, S.L., Frontiera, R.R., Henry, A.-I., Dieringer, J.A., Van Duyne, R.P.: Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21–36 (2013)

    Article  CAS  Google Scholar 

  197. Dieringer, J.A., Wustholz, K.L., Masiello, D.J., Camden, J.P., Kleinman, S.L., Schatz, G.C., Van Duyne, R.P.: Surface-enhanced raman excitation spectroscopy of a single rhodamine 6G molecule. J. Am. Chem. Soc. 131, 849–854 (2009)

    Article  CAS  Google Scholar 

  198. Taylor, R.W., Benz, F., Sigle, D.O., Bowman, R.W., Bao, P., Roth, J.S., Heath, G.R., Evans, S.D., Baumberg, J.J.: Watching individual molecules flex within lipid membranes using SERS. Sci. Rep. 4, 1–6 (2014)

    Google Scholar 

  199. Kim, K., Han, H.S., Choi, I., Lee, C., Hong, S., Suh, S.-H., Lee, L.P., Kang, T.: Interfacial liquid-state surface-enhanced raman spectroscopy. Nat. Commun. 4, 2182 (2013)

    Article  CAS  Google Scholar 

  200. Wu, D.-Y., Li, J.-F., Ren, B., Tian, Z.-Q.: Electrochemical surface-enhanced raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008)

    Article  CAS  Google Scholar 

  201. Zhang, K., Zhao, J., Xu, H., Li, Y., Ji, J., Liu, B.: Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection. ACS Appl. Mater. Interfaces. 7, 16767–16774 (2015)

    Article  CAS  Google Scholar 

  202. Zhang, K., Ji, J., Li, Y., Liu, B.: Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced raman scattering sensor for specific detection of trace analytes. Anal. Chem. 86, 6660–6665 (2014)

    Article  CAS  Google Scholar 

  203. Gadogbe, M., Ansar, S.M., Chu, I.-W., Zou, S., Zhang, D.: Comparative study of the self-assembly of gold and silver nanoparticles onto thiophene oil. Langmuir 30, 11520–11527 (2014)

    Article  CAS  Google Scholar 

  204. Zhang, K., Zhao, J., Ji, J., Li, Y., Liu, B.: Quantitative label-free and real-time surface-enhanced raman scattering monitoring of reaction kinetics using self-assembled bifunctional nanoparticle arrays. Anal. Chem. 87, 8702–8708 (2015)

    Article  CAS  Google Scholar 

  205. Dinsmore, A.D., Hsu, M.F., Nikolaides, M.G., Marquez, M., Bausch, A.R., Weitz, D.A.: Colloidosomes: selectively permeable capsules composed of colloidal particles. Science (80-.) 298, 1006–1009 (2002)

    Article  CAS  Google Scholar 

  206. Niikura, K., Iyo, N., Matsuo, Y., Mitomo, H., Ijiro, K.: Sub-100 Nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl. Mater. Interfaces. 5, 3900–3907 (2013)

    Article  CAS  Google Scholar 

  207. Huang, P., Lin, J., Li, W., Rong, P., Wang, Z., Wang, S., Wang, X., Sun, X., Aronova, M., Niu, G., et al.: Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew. Chemie Int. Ed. 52, 13958–13964 (2013)

    Article  CAS  Google Scholar 

  208. Lin, J., Wang, S., Huang, P., Wang, Z., Chen, S., Niu, G., Li, W., He, J., Cui, D., Lu, G., et al.: Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7, 5320–5329 (2013)

    Article  CAS  Google Scholar 

  209. Liu, D., Zhou, F., Li, C., Zhang, T., Zhang, H., Cai, W., Li, Y.: Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system. Angew. Chemie Int. Ed. 54, 9596–9600 (2015)

    Article  CAS  Google Scholar 

  210. Patra, D., Sanyal, A., Rotello, V.M.: Colloidal microcapsules: self-assembly of nanoparticles at the liquid-liquid interface. Chem. Asian J. 5, 2442–2453 (2010)

    Article  CAS  Google Scholar 

  211. Yang, Z., Altantzis, T., Zanaga, D., Bals, S., Van Tendeloo, G., Pileni, M.-P.: Supracrystalline Colloidal eggs: epitaxial growth and freestanding three-dimensional supracrystals in nanoscaled colloidosomes. J. Am. Chem. Soc. 138, 3493–3500 (2016)

    Article  CAS  Google Scholar 

  212. Zanaga, D., Bleichrodt, F., Altantzis, T., Winckelmans, N., Palenstijn, W.J., Sijbers, J., de Nijs, B., van Huis, M.A., Sánchez-Iglesias, A., Liz-Marzán, L.M., et al.: Quantitative 3D analysis of huge nanoparticle assemblies. Nanoscale 8, 292–299 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendixes

Appendixes

1.1.1 Appendix I. Mathematica Code to Calculate the Fermi Level of Nanoparticles

1.1.2 Appendix II. Mathematica Code to Implement Mie Theory

1.1.3 Appendix III. Flatte’s Model Without an External Electric Field

1.1.4 Appendix IV. DLVO Theory: Forces Between Nanoparticles in Assemblies at LLI

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smirnov, E. (2018). Introduction. In: Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-77914-0_1

Download citation

Publish with us

Policies and ethics