Skip to main content

Simurv 4.1

  • Chapter
  • First Online:
Underwater Robots

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 123))

  • 1996 Accesses

Abstract

Given the scalar, nonlinear, differential equation it is required to approximate it by a difference equation such that its solution, i.e., x(t), can be numerically evaluated by means of a computer. The theory of digitization is huge and well covered by textbooks of both analysis and control theory,here the sole equations needed to understand how to achieve the simulation of a 6DOFs rigid body, the basis for a vehicle-manipulator system, will be given.

‘Song’ ’e fierr ca’ fann ’o mast..

Neapolitan saying.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Antonelli, E. Cataldi, Basic interaction operations for an underwater vehicle-manipulator system, in ICAR 2015-17th International Conference on Advanced Robotics (Istanbul, T, July 2015)

    Google Scholar 

  2. P. Baerlocher, Inverse kinematics techniques for the interactive posture control of articulated figures. Ph.D. thesis, École Polytechnique Fédéral De Lausanne, 2001

    Google Scholar 

  3. F. Caccavale, S. Chiaverini, B. Siciliano, Second-order kinematic control of robot manipulators with jacobian damped least-squares inverse: theory and experiments. IEEE/ASME Trans. Mechatron. 2(3), 188–194 (1997)

    Article  Google Scholar 

  4. C.W. Chen, J.S. Kouh, J.F. Tsai, Modeling and simulation of an AUV simulator with guidance system 38(2), 211–225 (2012)

    Google Scholar 

  5. S. Chiaverini, G. Oriolo, and I. D. Walker, Chapter kinematically redundant manipulators, in Springer Handbook of Robotics ed. by B. Siciliano, O. Khatib (Springer, Heidelberg, D, 2008), pp. 245–268

    Google Scholar 

  6. P. Di Lillo, E. Simetti, D. De Palma, E. Cataldi, G. Indiveri, G. Antonelli, G. Casalino, Advanced ROV autonomy for efficient remote control in the DexROV project. Mar. Technol. Soc. J. 50(4), 67–80 (2016)

    Article  Google Scholar 

  7. D. Di Vito, C. Natale, G. Antonelli, A comparison of damped least squares algorithms for inverse kinematics of robot manipulators, in 20th IFAC World Congress (Toulouse, FR, July 2017)

    Google Scholar 

  8. J.W. Eaton, D. Bateman, S. Hauberg, GNU Octave Manual Version 3 (Network Theory Limited, 2008)

    Google Scholar 

  9. R. Featherstone, D. Orin, Robot dynamics: equations and algorithms, in Proceedings. ICRA’00. IEEE International Conference on Robotics and Automation, 2000, vol. 1 (IEEE, 2000), pp. 826–834

    Google Scholar 

  10. G.F. Franklin, J.D. Powell, M.L. Workman, Digital Control of Dynamic Systems (Addison-wesley Menlo Park, 1998)

    Google Scholar 

  11. J. Gancet, G. Antonelli, P. Weiss, A. Birk, S. Calinon, A. Turetta, C. Walen, D. Urbina, M. Ilzkovitz, P. Letier, F. Gauch, B. Chemisky, G. Casalino, G. Indiveri, M. Pfingsthorn, L. Guilpain, Dexrov: enabling effective dexterous rov operations in presence of communication latencies, in MTS/IEEE OCEANS 2015 (Genoa, I, April 2015)

    Google Scholar 

  12. A.A. Maciejewski, Numerical filtering for the operation of robotic manipulators through kinematically singular configurations. J. Robot. Syst. 5(6), 527–552 (1988)

    Article  Google Scholar 

  13. MATLAB, Version 7.10.0 (R2010a) (The MathWorks Inc., Natick, Massachusetts, 2010)

    Google Scholar 

  14. Octave community, GNU/Octave (2012)

    Google Scholar 

  15. T. Perez, T. Fossen, Marine Systems Simulator (2010) (Norwegian University of Science and Technology, Trondheim, Norway, 2013)

    Google Scholar 

  16. M. Prats, J. Pérez, J.J. Fernández, P. Sanz, An open source tool for simulation and supervision of underwater intervention missions, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2012), pp. 2577–2582

    Google Scholar 

  17. M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, A. Ng, ROS: an open-source robot operating system, in Open-source software workshop of the 2009 IEEE International Conference on Robotics and Automation (2009) (Kobe, J)

    Google Scholar 

  18. P.J. Sanz, P. Ridao, G. Oliver, C. Insaurralde, G. Casalino, C. Silvestre, C. Melchiorri, A. Turetta, TRIDENT: recent improvements about intervention missions, in IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles (NGCUV2012) (2012)

    Google Scholar 

  19. Scilab Enterprises, Scilab: Free and Open Source Software for Numerical Computation (Scilab Enterprises, Orsay, France, 2012)

    Google Scholar 

  20. P. Senarathne, W. Wijesoma, K. Lee, B. Kalyan, M. Moratuwage, N. Patrikalakis, F. Hover, MarineSIM: robot simulation for marine environments, in IEEE OCEANS 2010 (IEEE, 2010)

    Google Scholar 

  21. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: modelling, planning and control (Springer, 2009)

    Google Scholar 

  22. M.W. Walker, D.E. Orin, Efficient dynamic computer simulation of robotic mechanisms. J. Dyn. Syst. Meas. Control 104(3), 205–211 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Antonelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antonelli, G. (2018). Simurv 4.1. In: Underwater Robots. Springer Tracts in Advanced Robotics, vol 123. Springer, Cham. https://doi.org/10.1007/978-3-319-77899-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77899-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77898-3

  • Online ISBN: 978-3-319-77899-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics