Advertisement

Control of UVMSs

  • Gianluca Antonelli
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 123)

Abstract

A robotic system is kinematically redundant when it possesses more degrees of freedom than those required to execute a given task. A generic manipulation task is usually given in terms of trajectories for the end effector, specially position and orientation. In this sense, an Underwater Vehicle-Manipulator System is always kinematically redundant due to the DOFs provided by the vehicle itself. However, it is not always efficient to use vehicle thrusters to move the manipulator end effector because of the difficulty of controlling the vehicle in hovering. Moreover, due to the different inertia between vehicle and manipulator, movement of the latter is energetically more efficient.

References

  1. 1.
    B.D. Anderson, Failures of adaptive control theory and their resolution. Commun. Inf. Syst. 5(1), 1–20 (2005)MathSciNetzbMATHGoogle Scholar
  2. 2.
    G. Antonelli, Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE Trans. Rob. 25(5), 985–994 (2009)CrossRefGoogle Scholar
  3. 3.
    G. Antonelli, F. Arrichiello, S. Chiaverini, The Null-Space-based Behavioral control for autonomous robotic systems. J. Intell. Service Robot. 1(1), 27–39 (online March 2007, printed January 2008)Google Scholar
  4. 4.
    G. Antonelli, F. Caccavale, P. Chiacchio, A systematic procedure for the identification of dynamic parameters of robot manipulators. Robotica 17, 427–435 (1999)CrossRefGoogle Scholar
  5. 5.
    G. Antonelli, F. Caccavale, S. Chiaverini, A virtual decomposition based approach to adaptive control of underwater vehicle-manipulator systems, in 9th Mediterranean Conference on Control and Automation (Dubrovnik, HR, June 2001)Google Scholar
  6. 6.
    G. Antonelli, F. Caccavale, S. Chiaverini, Adaptive tracking control of underwater vehicle-manipulator systems based on the virtual decomposition approach. IEEE Trans. Robot. Autom. 20(3), 594–602 (2004)CrossRefGoogle Scholar
  7. 7.
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, A novel adaptive control law for autonomous underwater vehicles, in Proceedings 2001 IEEE International Conference on Robotics and Automation (Seoul, KR, May 2001), pp. 447–451Google Scholar
  8. 8.
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, On the use of integral control actions for autonomous underwater vehicles, in, 2001 European Control Conference (Porto, P, September 2001)Google Scholar
  9. 9.
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, A modular control law for underwater vehicle-manipulator systems adapting on a minimun set of parameters, in 15th Ifac World Congress (Barcelona, Spain, July 2002)Google Scholar
  10. 10.
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, A novel adaptive control law for underwater vehicles. IEEE Trans. Control Syst. Technol. 11(2), 221–232 (2003)CrossRefGoogle Scholar
  11. 11.
    G. Antonelli, E. Cataldi, Recursive adaptive control for an underwater vehicle carrying a manipulator, in 22th Mediterranean Conference on Control and Automation (Palermo, I, June 2014), pp. 847–852Google Scholar
  12. 12.
    G. Antonelli, E. Cataldi, Basic interaction operations for an underwater vehicle-manipulator system, in ICAR 2015-17th International Conference on Advanced Robotics (Istanbul, T, July 2015)Google Scholar
  13. 13.
    G. Antonelli, E. Cataldi, Virtual decomposition control for an underwater vehicle carrying a n-dof manipulator, in MTS/IEEE OCEANS 2015 (Genoa, I, May 2015)Google Scholar
  14. 14.
    G. Antonelli, S. Chiaverini, Adaptive tracking control of underwater vehicle-manipulator systems, in IEEE Conference on Control Applications (Trieste, Italy, September 1998), pp. 1089–1093Google Scholar
  15. 15.
    G. Antonelli, S. Chiaverini, Singularity-free regulation of underwater vehicle-manipulator systems, in Proceedings 1998 American Control Conference (Philadelphia, PA, June 1998), pp. 399–403Google Scholar
  16. 16.
    G. Antonelli, S. Chiaverini, Task-priority redundancy resolution for underwater vehicle-manipulator systems, in Proceedings 1998 IEEE International Conference on Robotics and Automation (Leuven, B, May 1998), pp. 768–773Google Scholar
  17. 17.
    G. Antonelli, S. Chiaverini, A fuzzy approach to redundancy resolution for underwater vehicle-manipulator systems, in Proceedings 5th IFAC Conference on Manoeuvring and Control of Marine Craft (Aalborg, Denmark, August 2000)Google Scholar
  18. 18.
    G. Antonelli, S. Chiaverini, Fuzzy inverse kinematics for underwater vehicle-manipulator systems, in 7th International Symposium on Advances in Robot Kinematics, Advances in Robot Kinematics, ed. by J. Lenarc̆ic̆, M.M. Stanis̆ić (NL Kluwer Academic Publishers, Dordrecht, Piran-PortoroŽ, SLO, June 2000), pp. 249–256Google Scholar
  19. 19.
    G. Antonelli, S. Chiaverini, A fuzzy approach to redundancy resolution for underwater vehicle-manipulator systems. Control Eng. Pract. 11(4), 445–452 (2003)CrossRefGoogle Scholar
  20. 20.
    G. Antonelli, S. Chiaverini, Fuzzy redundancy resolution and motion coordination for underwater vehicle-manipulator systems. IEEE Trans. Fuzzy Syst. 11(1), 109–120 (2003)CrossRefGoogle Scholar
  21. 21.
    G. Antonelli, S. Chiaverini, N. Sarkar, External force control for underwater vehicle-manipulator systems. IEEE Trans. Robot. Autom. 17(6), 931–938 (2001)CrossRefGoogle Scholar
  22. 22.
    G. Antonelli, G. Indiveri, S. Chiaverini, Prioritized closed-loop inverse kinematic algorithms for redundant robotic systems with velocity saturations, in Proceedings 2009 IEEE/RSJ International Conference on Intelligent RObots and Systems (St. Louis, MO, USA, October 2009), pp. 5892–5897Google Scholar
  23. 23.
    G. Antonelli, N. Sarkar, S. Chiaverini, Explicit force control for underwater vehicle-manipulator systems. Robotica 20(3), 251–260 (2002)CrossRefGoogle Scholar
  24. 24.
    G. Arleo, F. Caccavale, G. Muscio, F. Pierri, Control of quadrotor aerial vehicles equipped with a robotic arm, in 21st Mediterranean Conference on Control and Automation (Crete, GR, June 2013)Google Scholar
  25. 25.
    F. Arrichiello, S. Chiaverini, G. Indiveri, P. Pedone, The null-space based behavioral control for mobile robots with velocity actuator saturations. Int. J. Robot. Res. 29(10), 1317–1337 (2010)CrossRefGoogle Scholar
  26. 26.
    H. Azimian, T. Looi, J. Drake, Closed-loop inverse kinematics under inequality constraints: application to concentric-tube manipulators, in Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) (IEEE, 2014), pp. 498–503Google Scholar
  27. 27.
    C. Barbălăta, M.W. Dunnigan, Y. Pétillot, Reduction of the dynamic coupling in an underwater vehicle-manipulator system using an inverse dynamic model approach, in IFAC-PapersOnLine (IFAC, 2015), pp. 44–49Google Scholar
  28. 28.
    A. Ben-Israel, T. Greville, Generalized Inverses: Theory and Applications, vol. 15. (Springer, 2003)Google Scholar
  29. 29.
    H. Berghuis, H. Nijmeijer, A passivity approach to controller-observer design for robots. IEEE Trans. Robot. Autom. 9(6), 740–754 (1993)CrossRefGoogle Scholar
  30. 30.
    F. Caccavale, C. Natale, B. Siciliano, L. Villani, Resolved-acceleration control of robot manipulators: a critical review with experiments. Robotica 16(5), 565–573 (1998)CrossRefGoogle Scholar
  31. 31.
    C. Canudas De Wit, G. Bastin, B. Siciliano, Theory of Robot Control (Springer, New York Inc, 1996)zbMATHCrossRefGoogle Scholar
  32. 32.
    C. Canudas de Wit, E. Olguin Diaz, M. Perrier, Robust nonlinear control of an underwater vehicle/manipulator system with composite dynamics, in Proceedings. 1998 IEEE International Conference on Robotics and Automation, 1998 (IEEE, Leuven, Belgium, 1998), pp. 452–457Google Scholar
  33. 33.
    C. Canudas de Wit, O. Olguin Diaz, M. Perrier, Control of underwater vehicle/manipulator with composite dynamics, in Proceedings of the 1998 American Control Conference, 1998, vol. 1 (IEEE, 1998), pp. 389–393Google Scholar
  34. 34.
    C. Canudas de Wit, O. Olguin Diaz, M. Perrier. Nonlinear control of an underwater vehicle/manipulator with composite dynamics. IEEE Trans. Control Syst. Technol. 8(6), 948–960 (2000)Google Scholar
  35. 35.
    G. Casalino, D. Angeletti, T. Bozzo, G. Marani, Dexterous underwater object manipulation via multi-robot cooperating systems, in Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, 2001, vol. 4 (IEEE, Seoul, Korea, 2001), pp. 3220–3225Google Scholar
  36. 36.
    G. Casalino, M. Caccia, S. Caselli, C. Melchiorri, G. Antonelli, A. Caiti, G. Indiveri, G. Cannata, E. Simetti, S. Torelli, A. Sperindé, F. Wanderlingh, G. Muscolo, M. Bibuli, G. Bruzzone, E. Zereik, A. Odetti, E. Spirandelli, A. Ranieri, J. Aleotti, D.L. Rizzini, F. Oleari, F. Kallasi, G. Palli, U. Scarcia, L. Moriello, E. Cataldi, Underwater intervention robotics: an outline of the Italian national project MARIS. Marine Technol. Soc. J. 50(4), 98–107 (2016)Google Scholar
  37. 37.
    G. Casalino, A. Turetta, A computationally distributed self-organizing algorithm for the control of manipulators in the operational space, in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005 (IEEE, 2005), pp. 4050–4055Google Scholar
  38. 38.
    G. Casalino, A. Turetta, Dynamic programming based, computationally distributed control of modular manipulators in the operational space, in 2005 IEEE International Conference on Mechatronics and Automation (2005), pp. 1460–1467Google Scholar
  39. 39.
    G. Casalino, A. Turetta, A. Sorbara, Computationally distributed control and coordination architectures for underwater reconfigurable free-flying multi-manipulator, in Workshop on Underwater Robotics, Genova, Italy, November, 2005 (2005)Google Scholar
  40. 40.
    G. Casalino, E. Zereik, E. Simetti, S. Torelli, A. Sperindé, A. Turetta, Agility for underwater floating manipulation task and subsystem priority based control strategy, in International Conference on Intelligent Robots and Systems (IROS 2012) (September 2012)Google Scholar
  41. 41.
    N.A. Chaturvedi, A.K. Sanyal, N.H. McClamroch, Rigid-body attitude control. IEEE Control Syst. Mag. 31(3), 30–51 (2011)MathSciNetCrossRefGoogle Scholar
  42. 42.
    S. Chiaverini, Estimate of the two smallest singular values of the Jacobian matrix: application to damped least-squares inverse kinematics. J. Robot. Syst. 10(8), 991–1008 (1993)zbMATHCrossRefGoogle Scholar
  43. 43.
    S. Chiaverini, Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans. Robot. Autom. 13(3), 398–410 (1997)CrossRefGoogle Scholar
  44. 44.
    S. Chiaverini, G. Oriolo, I.D. Walker, Chapter kinematically redundant manipulators, in Springer Handbook of Robotics ed. by B. Siciliano, O. Khatib (Springer, Heidelberg, D, 2008), pp. 245–268Google Scholar
  45. 45.
    S. Chiaverini, B. Siciliano, The unit quaternion: a useful tool for inverse kinematics of robot manipulators. Syst. Anal. Model. Simul. 35(1), 45–60 (1999)zbMATHGoogle Scholar
  46. 46.
    S.K. Choi, J. Yuh, Experimental study on a learning control system with bound estimation for underwater robots. Auton. Robots 3(2), 187–194 (1996)CrossRefGoogle Scholar
  47. 47.
    G.B. Chung, K.S. Eom, B.-J. Yi, I.H. Suh, S.-R. Oh, W.K. Chung, J. Kim, Disturbance observer-based robust control for underwater robotic systems with passive joints. Adv. Robot. 15(5), 575–588 (2001)CrossRefGoogle Scholar
  48. 48.
    Y. Cui, T.K. Podder, N. Sarkar, Impedance control of underwater vehicle-manipulator systems (UVMS), in Proceedings. 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1999. IROS’99, vol. 1 (IEEE, Kyongju, Korea, 1999), pp. 148–153Google Scholar
  49. 49.
    Y. Cui, N. Sarkar, A unified force control approach to autonomous underwater manipulation. Robotica 19(03), 255–266 (2001)CrossRefGoogle Scholar
  50. 50.
    M.W. Dannigan, G.T. Russell, Evaluation and reduction of the dynamic coupling between a manipulator and an underwater vehicle. IEEE J. Ocean. Eng. 23(3), 260–273 (1998)CrossRefGoogle Scholar
  51. 51.
    M. de Lasa, I. Mordatch, A. Hertzmann, Feature-based locomotion controllers. ACM Trans. Graph. (TOG) 29(4) (2010)Google Scholar
  52. 52.
    J. De Schutter, H. Van Brussel, Compliant robot motion II. A control approach based on external control loops. Int. J. Robot. Res. 7(4), 18–33 (1988)CrossRefGoogle Scholar
  53. 53.
    E. Dégoulange, P. Dauchez, External force control of an industrial PUMA 560 robot. J. Robot. Syst. 11(6), 523–540 (1994)CrossRefGoogle Scholar
  54. 54.
    P. Di Lillo, E. Simetti, D. De Palma, E. Cataldi, G. Indiveri, G. Antonelli, G. Casalino, Advanced ROV autonomy for efficient remote control in the DexROV project. Marine Technol. Soc. J. 50(4), 67–80 (2016)CrossRefGoogle Scholar
  55. 55.
    D. Di Vito, C. Natale, G. Antonelli, A comparison of damped least squares algorithms for inverse kinematics of robot manipulators, in 20th IFAC World Congress (Toulouse, FR, July 2017)Google Scholar
  56. 56.
    D. Driankov, H. Hellendoorn, M. Reinfrank, An Introduction to Fuzzy Control (Springer, Heidelberg, D, 1996)Google Scholar
  57. 57.
    M.W. Dunnigan, G.T. Russell, Reduction of the dynamic coupling between a manipulator and ROV using variable structure control, in International Conference on Control, 1994. Control’94 (IET, 1994), pp. 1578–1583Google Scholar
  58. 58.
    O. Egeland, Task-space tracking with redundant manipulators. IEEE J. Robot. Autom. 3(5), 471–475 (1987)CrossRefGoogle Scholar
  59. 59.
    O. Egeland, J.-M. Godhavn, Passivity-based adaptive attitude control of a rigid spacecraft. IEEE Trans. Autom. Control 39(4), 842–846 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    A. Escande, N. Mansard, P.-B. Wieber, Hierarchical quadratic programming: Fast online humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014)CrossRefGoogle Scholar
  61. 61.
    B. Faverjon, P. Tournassoud, A local based approach for path planning of manipulators with a high number of degrees of freedom, in Proceedings of 1987 IEEE International Conference on Robotics and Automation (ICRA), vol. 4 (Raleigh, NC, 1987), pp. 1152–1159Google Scholar
  62. 62.
    J. Fernández, M. Prats, P. Sanz, J. C. García Sánchez, R. Marin, M. Robinson, D. Ribas, P. Ridao, Manipulation in the seabed: A new underwater robot arm for shallow water intervention. IEEE Robot. Autom. Mag. (2013)Google Scholar
  63. 63.
    G. Ferretti, G. Magnani, P. Rocco, Toward the implementation of hybrid position/force control in industrial robots. IEEE Trans. Robot. Autom. 13(6), 838–845 (1997)CrossRefGoogle Scholar
  64. 64.
    O.E. Fjellstad, T.I. Fossen, Singularity-free tracking of unmanned underwater vehicles in 6 DOF, in Proceedings of the 33rd IEEE Conference on Decision and Control, 1994, vol. 2 (IEEE, 1994), pp. 1128–1133Google Scholar
  65. 65.
    F. Flacco, The tasks priority matrix: a new tool for hierarchical redundancy resolution, In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) (IEEE, 2016), pp. 1–7Google Scholar
  66. 66.
    F. Flacco, A. De Luca, O. Khatib, Motion control of redundant robots under joint constraints: saturation in the null space, in 2012 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2012), pp. 285–292Google Scholar
  67. 67.
    T. Fossen, Adaptive macro-micro control of nonlinear underwater robotic systems, in Fifth International Conference on Advanced Robotics, 1991.’Robots in Unstructured Environments’, 91 ICAR (IEEE, 1991), pp. 1569–1572Google Scholar
  68. 68.
    T. Fossen, Guidance and Control of Ocean Vehicles (Chichester New York, 1994)Google Scholar
  69. 69.
    T. Fossen, Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles (Marine Cybernetics, Trondheim, Norway, 2002)Google Scholar
  70. 70.
    T. Fossen, J.G. Balchen, et al., The NEROV autonomous underwater vehicle, in Proceedings of Conference Oceans 91 (Citeseer ,Honolulu, HI, 1991)Google Scholar
  71. 71.
    T.I. Fossen, O. Fjellstad, Robust adaptive control of underwater vehicles: a comparative study, in IFAC Workshop on Control Applications in Marine Systems (IEEE, Trondheim, Norway, 1995), pp. 66–74Google Scholar
  72. 72.
    P. Fraisse, L. Lapierre, P. Dauchez, F. Pierrot, Position/force control of an underwater vehicle equipped with a robotic manipulator, in 6th IFAC Symposium on Robot Control, Wien, Austria (Wien, Austria, 2000), pp. 475–479Google Scholar
  73. 73.
    J. Gancet, G. Antonelli, P. Weiss, A. Birk, S. Calinon, A. Turetta, C. Walen, D. Urbina, M. Ilzkovitz, P. Letier, F. Gauch, B. Chemisky, G. Casalino, G. Indiveri, M. Pfingsthorn, L. Guilpain, Dexrov: enabling effective dexterous ROV operations in presence of communication latencies, in MTS/IEEE OCEANS 2015 (Genoa, I, April 2015)Google Scholar
  74. 74.
    M. Gautier, W. Khalil, Direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans. Robot. Autom. 6, 368–373 (1990)CrossRefGoogle Scholar
  75. 75.
    J. Han, W.K. Chung, Redundancy resolution for underwater vehicle-manipulator systems with minimizing restoring moments, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007 (IEEE, San Diego, California, 2007), pp. 3522–3527Google Scholar
  76. 76.
    J. Han, W.K. Chung, Coordinated motion control of underwater vehicle-manipulator system with minimizing restoring moments, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. IROS 2008 (IEEE, 2008), pp. 3158–3163Google Scholar
  77. 77.
    J. Han, W.K. Chung, Active use of restoring moments for motion control of an underwater vehicle-manipulator system. IEEE J. Ocean. Eng. (2013)Google Scholar
  78. 78.
    A. Healey, D. Lienard, Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18(3), 327–339 (1993)CrossRefGoogle Scholar
  79. 79.
    S. Heshmati-alamdari, A. Nikou, K. Kyriakopoulos, D.V. Dimarogonas, A robust control approach for underwater vehicle manipulator systems in interaction with compliant environments (2016), arXiv:1611.07399
  80. 80.
    M. Hildebrandt, L. Christensen, J. Kerdels, J. Albiez, F. Kirchner, Realtime motion compensation for ROV-based tele-operated underwater manipulators, in OCEANS 2009-EUROPE (2009), pp. 1–6Google Scholar
  81. 81.
    N. Hogan, Impedance control: an approach to manipulation: Part I-III. J. Dyn. Syst. Meas. Control 107(2), 1–24 (1985)zbMATHCrossRefGoogle Scholar
  82. 82.
    J.M. Hollerbach, Optimum kinematic design for a seven degree of freedom manipulator, in Proceedings 2nd International Symposium on Robotics Research (1985)Google Scholar
  83. 83.
    S. Ishibashi, E. Shimizu, M. Ito, The motion planning for underwater manipulators depend on genetic algorithm, in IFAC World Congress (Barcelona, Spain, 2002)Google Scholar
  84. 84.
    M. Ishitsuka, K. Ishii, Development of an underwater manipulator mounted for an AUV, in OCEANS, 2005. Proceedings of MTS/IEEE (2005), pp. 1811–1816Google Scholar
  85. 85.
    M. Ishitsuka, S. Sagara, K. Ishii, Dynamics analysis and resolved acceleration control of an autonomous underwater vehicle equipped with a manipulator, in 2004 International Symposium on Underwater Technology, 2004. UT’04 (IEEE, Taipei, Taiwan, 2004), pp. 277–281Google Scholar
  86. 86.
    Z.H. Ismail, M.W. Dunnigan, Redundancy resolution for underwater vehicle-manipulator systems with congruent gravity and buoyancy loading optimization, in 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, Guilin, PRC, 2009), pp. 1393–1399Google Scholar
  87. 87.
    B.H. Jun, J. Lee, P.M. Lee, Manipulability analysis of underwater robotic arms on ROV and application to task-oriented joint configuration, in OCEANS’04. MTTS/IEEE TECHNO-OCEAN’04, vol. 3 (IEEE, 2004), pp. 1548–1553Google Scholar
  88. 88.
    B.H. Jun, J. Lee, P.M. Lee, A repetitive periodic motion planning of articulated underwater robots subject to drag optimization, in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005.(IROS 2005) (IEEE, 2005), pp. 1917–1922Google Scholar
  89. 89.
    H. Kajita, K. Kosuge, Force control of robot floating on the water utilizing vehicle restoring force, in Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997. IROS’97, vol. 1 (IEEE, Grenoble, France, 1997), pp. 162–167Google Scholar
  90. 90.
    J.I. Kang, H.S. Choi, B.-H. Jun, N.-D. Nguyen, J.-Y. Kim, Control and implementation of underwater vehicle manipulator system using zero moment point, in Underwater Technology (UT), 2017 IEEE (IEEE, 2017), pp. 1–5Google Scholar
  91. 91.
    O. Kanoun, F. Lamiraux, P.B. Wieber, Kinematic control of redundant manipulators: generalizing the task-priority framework to inequality task. IEEE Trans. Rob. 27(4), 785–792 (2011)CrossRefGoogle Scholar
  92. 92.
    N. Kato, D. Lane, Co-ordinated control of multiple manipulators in underwater robots, in Proceedings. 1996 IEEE International Conference on Robotics and Automation, 1996, vol. 3 (IEEE, Minneapolis, Minnesota, 1996), pp. 2505–2510Google Scholar
  93. 93.
    S. Kawamura, N. Sakagami, Analysis on dynamics of underwater robot manipulators based on iterative learning control and time-scale transformation, in Proceedings. ICRA’02. IEEE International Conference on Robotics and Automation, 2002, vol. 2 (IEEE, Washington, DC, 2002), pp. 1088–1094Google Scholar
  94. 94.
    H.K. Khalil, Nonlinear Systems, 2nd edn. (Prentice-Hall, Upper Saddle River, New Jersey, 1996)Google Scholar
  95. 95.
    O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90 (1986)CrossRefGoogle Scholar
  96. 96.
    O. Khatib, A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)CrossRefGoogle Scholar
  97. 97.
    O. Khatib. Ocean one: a robotic avatar for oceanic discovery. IEEE Robot. Autom. Mag. (2016)Google Scholar
  98. 98.
    O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, A. Casal, Vehicle/arm coordination and multiple mobile manipulator decentralized cooperation, in Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems’96, IROS 96, vol. 2 (IEEE, Osaka, Japon, 1996), pp. 546–553Google Scholar
  99. 99.
    J. Kim, W.K. Chung, J. Yuh, Dynamic analysis and two-time scale control for underwater vehicle-manipulator systems, in Proceedings. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.(IROS 2003), vol. 1 (IEEE, 2003), pp. 577–582Google Scholar
  100. 100.
    T.W. Kim, G. Marani, J. Yuh, Chapter underwater vehicle manipulators, in Springer Handbook of Ocean Engineering ed. by M.R. Dhanak, N.I. Xiros (Springer, Heidelberg, D, 2016), pp. 407–422Google Scholar
  101. 101.
    N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source multi-robot simulator, in Proceedings. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (IROS 2004), vol. 3 (IEEE, 2004), pp. 2149–2154Google Scholar
  102. 102.
    J. Lee, N. Mansard, J. Park, Intermediate desired value approach for task transition of robots in kinematic control (2012)Google Scholar
  103. 103.
    M. Lee, H.-S. Choi, A robust neural controller for underwater robot manipulators. IEEE Trans. Neural Netw. 11(6), 1465–1470 (2000)CrossRefGoogle Scholar
  104. 104.
    P.-M. Lee, J. Yuh, Application of non-regressor based adaptive control to an underwater mobile platform-mounted manipulator, in Proceedings of the 1999 IEEE International Conference on Control Applications, 1999, vol. 2, (IEEE, Kohala Coast, Hawaii, 1999), pp. 1135–1140Google Scholar
  105. 105.
    S. Lemieux, J. Beaudry, M. Blain, Force control test bench for underwater vehicle-manipulator system applications, in IECON 2006-32nd Annual Conference on IEEE Industrial Electronics (2006), pp. 4036–4042Google Scholar
  106. 106.
    A. Liégeois, Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans. Syst. Man Cybern. 7, 868–871 (1977)zbMATHCrossRefGoogle Scholar
  107. 107.
    F. Lizarralde, J.T. Wen, L. Hsu, Quaternion-based coordinated control of a subsea mobile manipulator with only position measurements, in Proceedings of the 34th IEEE Conference on Decision and Control, 1995, vol. 4 (IEEE, New Orleans, Louisiana, 1995), pp. 3996–4001Google Scholar
  108. 108.
    B. Lynch, A. Ellery, Efficient control of an AUV-manipulator system: an application for the exploration of Europa. 39, 552–570 (07 2014)Google Scholar
  109. 109.
    A. Maciejewski, C. Klein, Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int. J. Robot. Res. 4(3), 109–117 (1985)CrossRefGoogle Scholar
  110. 110.
    A.A. Maciejewski, Numerical filtering for the operation of robotic manipulators through kinematically singular configurations. J. Robot. Syst. 5(6), 527–552 (1988)CrossRefGoogle Scholar
  111. 111.
    H. Mahesh, J. Yuh, R. Lakshmi, Control of underwater robots in working mode, in Proceedings. 1991 IEEE International Conference on Robotics and Automation, 1991 (IEEE, 1991), pp. 2630–2635Google Scholar
  112. 112.
    H. Mahesh, J. Yuh, R. Lakshmi, A coordinated control of an underwater vehicle and robotic manipulator. J. Robot. Syst. 8(3), 339–370 (1991)zbMATHCrossRefGoogle Scholar
  113. 113.
    N. Manerikar, G. Casalino, E. Simetti, S. Torelli, A. Sperindé, On autonomous cooperative underwater floating manipulation systems, in 2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2015), pp. 523–528Google Scholar
  114. 114.
    N. Mansard, F. Chaumette, Task sequencing for high-level sensor-based control. IEEE Trans. Robot. Autom. 23(1), 60–72 (2007)CrossRefGoogle Scholar
  115. 115.
    N. Mansard, O. Khatib, A. Kheddar, A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Trans. Robot. 25(3), 670–685 (2009)CrossRefGoogle Scholar
  116. 116.
    G. Marani, S.K. Choi, J. Yuh, Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng. 36(1), 15–23 (2009)CrossRefGoogle Scholar
  117. 117.
    G. Marani, S.K. Choi, J. Yuh, Real-time center of buoyancy identification for optimal hovering in autonomous underwater intervention. Intel. Serv. Robot. 3(3), 175–182 (2010)CrossRefGoogle Scholar
  118. 118.
    G. Marani, J. Yuh, Introduction to Autonomous Manipulation: Case Study with an Underwater Robot, SAUVIM, vol. 102 (Springer, 2014)Google Scholar
  119. 119.
    G. Marani, J. Yuh, S.K. Choi, Autonomous manipulation for an intervention AUV. IEE Control Eng. Ser. 69, 217 (2006)Google Scholar
  120. 120.
    E. Marchand, F. Chaumette, F. Spindler, M. Perrier, Controlling the manipulator of an underwater ROV using a coarse calibrated pan/tilt camera, in Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, 2001, vol. 3 (IEEE, Seoul, Korea, 2001), pp. 2773–2778Google Scholar
  121. 121.
    M. Mason, Compliance and force control for computer controlled manipulators. IEEE Trans. Syst. Man Cybern. 11(6), 418–432 (1981)MathSciNetCrossRefGoogle Scholar
  122. 122.
    T.W. McLain, S.M. Rock, M.J. Lee, Coordinated control of an underwater robotic system, in Video Proceedings of the 1996 IEEE International Conference on Robotics and Automation (1996), pp. 4606–4613Google Scholar
  123. 123.
    T.W. McLain, S.M. Rock, M.J. Lee, Experiments in the coordinated control of an underwater arm/vehicle system. Auton. Robots 3(2), 213–232 (1996)CrossRefGoogle Scholar
  124. 124.
    S. Moe, G. Antonelli, A. Teel, K. Pettersen, J. Schrimpf, Set-based tasks within the singularity-robust multiple task-priority inverse kinematics framework: general formulation, stability analysis and experimental results. Front. Robot. AI 3, 16 (2016)CrossRefGoogle Scholar
  125. 125.
    S. Mohan, K. Jinwhan, K. Yonghyun, A null space control of an underactuated underwater vehicle-manipulator system under ocean currents, in OCEANS, 2012-Yeosu (2012), pp. 1–5Google Scholar
  126. 126.
    S. Mohan, J. Kim, Indirect adaptive control for autonomous underwater vehicle-manipulator systems, in International Offshore and Polar Engineering Conference (2012)Google Scholar
  127. 127.
    S. Mohan, J. Kim, Indirect adaptive control of an autonomous underwater vehicle-manipulator system for underwater manipulation tasks. Ocean Eng. 54, 233–243 (2012)CrossRefGoogle Scholar
  128. 128.
    Y. Nakamura, H. Hanafusa, Inverse kinematic solutions with singularity robustness for robot manipulator control. ASME Trans. J. Dyn. Syst. Meas. Control 108, 163–171 (1986)zbMATHCrossRefGoogle Scholar
  129. 129.
    Y. Nakamura, H. Hanafusa, T. Yoshikawa, Task-priority based redundancy control of robot manipulators. Int. J. Robot. Res. 6(2), 3–15 (1987)CrossRefGoogle Scholar
  130. 130.
    J. Nakanishi, R. Cory, M. Mistry, J. Peters, S. Schaal, Comparative experiments on task space control with redundancy resolution, in Proceedings 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (Edmonton, CA, August 2005), pp. 3901–3908Google Scholar
  131. 131.
    J. Nakanishi, R. Cory, M. Mistry, J. Peters, S. Schaal, Operational space control: a theoretical and empirical comparison. Int. J. Robot. Res. 27(6), 737–757 (2008)CrossRefGoogle Scholar
  132. 132.
    J. Nie, J. Yuh., E. Kardash, T. Fossen, On-board sensor-based adaptive control of small UUVS in very shallow water. Int. J. Adapt. Control Signal Process. 14(4), 441–452 (2000)Google Scholar
  133. 133.
    E. Olguin Diaz, Modélisation et Commande d’un Système Véhicule/Manipulateur Sous-Marin (in French). Ph.D. thesis, Docteur de l’Institut National Polytechnique de Grenoble, Grenoble, France, 1999Google Scholar
  134. 134.
    E. Olguin-Diaz, G. Arechavaleta, G. Jarquin, V. Parra-Vega, A passivity-based model-free force–motion control of underwater vehicle-manipulator systems. IEEE Trans. Robot. (2013)Google Scholar
  135. 135.
    R. Ortega, M. Spong, Adaptive motion control of rigid robots: a tutorial. Automatica 25(6), 877–888 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    T. Padir, Kinematic redundancy resolution for two cooperating underwater vehicles with on-board manipulators, in 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 4 (2005), pp. 3137–3142Google Scholar
  137. 137.
    T. Padir, J.D. Nolff, Manipulability and maneuverability ellipsoids for two cooperating underwater vehicles with on-board manipulators, in ISIC. IEEE International Conference on Systems, Man and Cybernetics, 2007 (2007), pp. 3656–3661Google Scholar
  138. 138.
    N. Palomeras, A. Carrera, N. Hurtós, G.C. Karras, C.P. Bechlioulis, M. Cashmore, D. Magazzeni, D. Long, M. Fox, K. Kyriakopoulos et al., Toward persistent autonomous intervention in a subsea panel. Auton. Robots 40(7), 1279–1306 (2016)CrossRefGoogle Scholar
  139. 139.
    N. Palomeras, A. Penalver, M. Massot-Campos, G. Vallicrosa, P. Negre, J.J. Fernández, P. Ridao, P.J. Sanz, G. Oliver-Codina, A. Palomer, I-AUV docking and intervention in a subsea panel, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) (IEEE, 2014), pp. 2279–2285Google Scholar
  140. 140.
    S.R. Pandian, N. Sakagami, A neuro-fuzzy controller for underwater robot manipulators, in 2010 11th International Conference on Control Automation Robotics Vision (ICARCV) (2010), pp. 2135–2140Google Scholar
  141. 141.
    T.K. Podder, Dynamic and control of kinematically redundant underwater vehicle-manipulator systems. Technical Report ASL 98-01, Autonomous Systems Laboratory Technical Report (University of Hawaii, Honolulu, Hawaii, 1998)Google Scholar
  142. 142.
    T.K. Podder, N. Sarkar, Dynamic trajectory planning for autonomous underwater vehicle-manipulator systems, in Proceedings. ICRA’00. IEEE International Conference on Robotics and Automation, 2000, vol. 4 (IEEE, 2000), pp. 3461–3466Google Scholar
  143. 143.
    M. Prats, D. Ribas, N. Palomeras, J.C. García, V. Nannen, S. Wirth, J.J. Fernández, J.P. Beltrán, R. Campos, P. Ridao et al., Reconfigurable AUV for intervention missions: a case study on underwater object recovery. Intel. Serv. Robot. 5(1), 19–31 (2012)CrossRefGoogle Scholar
  144. 144.
    M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, A. Ng, ROS: an open-source robot operating system, in Open-source software workshop of the 2009 IEEE International Conference on Robotics and Automation (2009) (Kobe, J)Google Scholar
  145. 145.
    M. Quigley, K. Conley, B.P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.Y. Ng, Ros: an open-source robot operating system, in ICRA Workshop on Open Source Software (2009)Google Scholar
  146. 146.
    A.W. Quinn, D. Lane, Computational issues in motion planning for autonomous underwater vehicles with manipulators, in AUV’94., Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology, 1994 (IEEE, 1994), pp. 255–262Google Scholar
  147. 147.
    M.H. Raibert, J.J. Craig, Hybrid position/force control of manipulators. Trans. ASME J. Dyn. Syst. Meas. Control 102, 126–133 (1981)Google Scholar
  148. 148.
    R.E. Roberson, R. Schwertassek, Dynamics of Multibody Systems, vol. 18 (Springer, Berlin, 1988)zbMATHCrossRefGoogle Scholar
  149. 149.
    J.H. Ryu, D.-S. Kwon, P.-M. Lee. Control of underwater manipulators mounted on an ROV using base force information, in Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, 2001, vol. 4 (IEEE, Seoul, Korea, 2001), pp. 3238–3243Google Scholar
  150. 150.
    N. Sakagami, M. Shibata, S. Kawamura, T. Inoue, H. Onishi, S. Murakami, An attitude control system for underwater vehicle-manipulator systems, in 2010 IEEE International Conference on Robotics and Automation (ICRA) (2010), pp. 1761–1767Google Scholar
  151. 151.
    N. Sakagami, T. Ueda, M. Shibata, S. Kawamura, Pitch and roll control using independent movable floats for small underwater robots, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2011), pp. 4756–4761Google Scholar
  152. 152.
    J.K. Salisbury, Active stiffness control of a manipulator in cartesian coordinates, in 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, vol. 19 (IEEE, Albuquerque, New Mexico, 1980), pp. 95–100Google Scholar
  153. 153.
    M. Santhakumar, Task space trajectory tracking control of an underwater vehicle-manipulator system under ocean currents. Indian J. Geo-Marine Sci. 42(6), 675–683 (2013)Google Scholar
  154. 154.
    N. Sarkar and T.K. Podder, Motion coordination of underwater vehicle-manipulator systems subject to drag optimization, in Proceedings. 1999 IEEE International Conference on Robotics and Automation, 1999, vol. 1 (IEEE, 1999), pp. 387–392Google Scholar
  155. 155.
    N. Sarkar, T.K. Podder, Coordinated motion planning and control of autonomous underwater vehicle-manipulator systems subject to drag optimization. IEEE J. Ocean. Eng. 26(2), 228–239 (2001)CrossRefGoogle Scholar
  156. 156.
    N. Sarkar, J. Yuh, T.K. Podder, Adaptive control of underwater vehicle-manipulator systems subject to joint limits, in Proceedings. 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1999. IROS’99, vol. 1 (IEEE, 1999), pp. 142–147Google Scholar
  157. 157.
    I. Schjølberg, Modeling and control of underwater robotic systems. Ph.D. thesis, Doktor ingeniør degree, Norwegian University of Science and Technology, Trondheim, Norway, 1996Google Scholar
  158. 158.
    I. Schjølberg, T. Fossen, Modelling and control of underwater vehicle-manipulator systems, in Proceedings of 3rd Conference on Marine Craft Maneuvering and Control (Southampton, UK, 1994), pp. 45–57Google Scholar
  159. 159.
    L. Sentis, Synthesis and control of whole-body behaviors in humanoid systems. Ph.D. thesis, Stanford University, 2007Google Scholar
  160. 160.
    J. Shao, L. Wang, J. Yu, Development of an artificial fish-like robot and its application in cooperative transportation. Control Eng. Pract. 16(5), 569–584 (2008)CrossRefGoogle Scholar
  161. 161.
    S.W. Shepperd, Quaternion from rotation matrix. J. Guid. Control 1, 223 (1978)zbMATHGoogle Scholar
  162. 162.
    B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: modelling, planning and control (Springer, 2009)Google Scholar
  163. 163.
    B. Siciliano, J.-J.E. Slotine, A general framework for managing multiple tasks in highly redundant robotic systems, in Proceedings 5th International Conference on Advanced Robotics (Pisa, I, 1991), pp. 1211–1216Google Scholar
  164. 164.
    B. Siciliano, L. Villani, Robot force control, vol. 540 (Kluwer Academic Publishers, 1999)Google Scholar
  165. 165.
    E. Simetti, G. Casalino, Manipulation and transportation with cooperative underwater vehicle manipulator systems. IEEE J. Ocean. Eng. (2016)Google Scholar
  166. 166.
    E. Simetti, G. Casalino, N. Manerikar, A. Sperindé, S. Torelli, F. Wanderlingh, Cooperation between autonomous underwater vehicle manipulations systems with minimal information exchange, in OCEANS 2015-Genova (IEEE, 2015), pp. 1–6Google Scholar
  167. 167.
    E. Simetti, G. Casalino, S. Torelli, A. Sperindé, A. Turetta, Floating underwater manipulation: developed control methodology and experimental validation within the TRIDENT project. J. Field Robot. 31(3), 364–385 (2013)CrossRefGoogle Scholar
  168. 168.
    J.J. Slotine, M. Di Benedetto, Hamiltonian adaptive control of spacecraft. IEEE Trans. Autom. Control 35(7), 848–852 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  169. 169.
    J.J. Slotine, W. Li, Adaptive strategies in constrained manipulation, in Proceedings. 1987 IEEE International Conference on Robotics and Automation (IEEE, Raleigh, NC, 1987), pp. 595–601Google Scholar
  170. 170.
    J.J. Slotine, W. Li, Applied nonlinear control, vol. 199 (Prentice hall New Jersey, 1991)Google Scholar
  171. 171.
    J.J.E. Slotine, W. Li, On the adaptive control of robot manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)CrossRefGoogle Scholar
  172. 172.
    S. Soylu, B.J. Buckham, R.P. Podhorodeski, Redundancy resolution for underwater mobile manipulators. Ocean Eng. 37(2), 325–343 (2010)CrossRefGoogle Scholar
  173. 173.
    Y.C. Sun, C.C. Cheah, Adaptive setpoint control of underwater vehicle-manipulator systems, in IEEE Conference on Robotics, Automation and Mechatronics, 2004, vol. 1 (IEEE, Singapore, 2004), pp. 434–439Google Scholar
  174. 174.
    Y.C. Sun, C.C. Cheah. Coordinated control of multiple cooperative underwater vehicle-manipulator systems holding a common load, in OCEANS’04. MTTS/IEEE TECHNO-OCEAN’04, vol. 3 (IEEE, Kobe, Japan, 2004), pp. 1542–1547Google Scholar
  175. 175.
    J. Sverdrup-Thygeson, E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, The underwater swimming manipulator-a bio-inspired AUV, in Autonomous Underwater Vehicles (AUV), 2016 IEEE/OES (IEEE, 2016), pp. 387–395Google Scholar
  176. 176.
    Q. Tang, L. Liang, J. Xie, Y. Li, Z. Deng, Task-priority redundancy resolution on acceleration level for underwater vehicle-manipulator system. Int. J. Adv. Robot. Syst. (2017), pp. 1–9Google Scholar
  177. 177.
    T.J. Tarn, G.A. Shoults, S.P. Yang, A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Auton. Robots 3(2), 269–283 (1996)CrossRefGoogle Scholar
  178. 178.
    T.J. Tarn, S.P. Yang, Modeling and control for underwater robotic manipulators-an example, in Proceedings. 1997 IEEE International Conference on Robotics and Automation, 1997, vol. 3 (IEEE, Albuquerque, NM, 1997), pp. 2166–2171Google Scholar
  179. 179.
    A. Turetta, G. Casalino, A. Sorbara, Distributed control architecture for self-reconfigurable manipulators. Int. J. Robot. Res. 27(3–4), 481–504 (2008)CrossRefGoogle Scholar
  180. 180.
    V. Utkin, Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  181. 181.
    L. Villani, J. De Schutter, Chapter force control, in Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Heidelberg, D, 2008)Google Scholar
  182. 182.
    Y. Wang, S. Jiang, F. Yan, L. Gu, B. Chen, A new redundancy resolution for underwater vehiclemanipulator system considering payload. Int. J. Adv. Robot. Syst. (2017), pp. 1–10Google Scholar
  183. 183.
    L.L. Whitcomb, D. Yoerger, Development, comparison, and preliminary experimental validation of nonlinear dynamic thruster models. IEEE J. Ocean. Eng. 24(4), 481–494 (1999)CrossRefGoogle Scholar
  184. 184.
    D.E. Whitney, Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man Mach. Syst. 10(2), 47–53 (1969)MathSciNetCrossRefGoogle Scholar
  185. 185.
    D.E. Whitney, Force feedback control of manipulator fine motions. ASME J. Dyn. Syst. Meas. Control 98, 91–97 (1977)CrossRefGoogle Scholar
  186. 186.
    D.E. Whitney, Historical perspective and state of the art in robot force control. Int. J. Robot. Res. 6(1), 3–14 (1987)CrossRefGoogle Scholar
  187. 187.
    T. Yoshikawa, Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985)CrossRefGoogle Scholar
  188. 188.
    D. Youakim, P. Ridao, N. Palomeras, F. Spadafora, D. Ribas, M. Muzzupappa, Autonomous underwater free-floating manipulation using MoveIt! IEEE Robot. Autom. Mag. (2017)Google Scholar
  189. 189.
    K.K. Young, Controller design for a manipulator using theory of variable structure systems. IEEE Trans. Syst. Man Cybern. 8(2), 101–109 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  190. 190.
    J. Yuh, Modeling and control of underwater robotic vehicles. IEEE Trans. Syst. Man Cybern. 20(6), 1475–1483 (1990)CrossRefGoogle Scholar
  191. 191.
    J. Yuh, An adaptive and learning control system for underwater robots, in 13th World Congress International Federation of Automatic Control (San Francisco, California, 1996), pp. 145–150Google Scholar
  192. 192.
    J. Yuh, J. Nie, C.S.G. Lee, Experimental study on adaptive control of underwater robots, in Proceedings. 1999 IEEE International Conference on Robotics and Automation, 1999 (IEEE, 1999), pp. 393–398Google Scholar
  193. 193.
    J. Yuh, S. Zhao, P.-M. Lee, Application of adaptive disturbance observer control to an underwater manipulator, in Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, 2001, vol. 4 (IEEE, Seoul, Korea, 2001), pp. 3244–3249Google Scholar
  194. 194.
    S. Zhao, J. Yuh, Experimental study on advanced underwater robot control. IEEE Trans. Robot. 21(4), 695–703 (2005)CrossRefGoogle Scholar
  195. 195.
    W. Zhao, S. Peng, Y. Wang, X. Liu, Fused multiple tasks motion planning for underwater vehicle-manipulator system, in 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 1 (IEEE, 2013), pp. 322–326Google Scholar
  196. 196.
    W.H. Zhu, Virtual Decomposition Control: Toward Hyper Degrees of Freedom Robots, vol. 60 (Springer, 2010)Google Scholar
  197. 197.
    W.H. Zhu, T. Lamarche, E. Dupuis, D. Jameux, P. Barnard, G. Liu, Precision control of modular robot manipulators: The VDC approach with embedded FPGA. IEEE Trans. Robot. (2013)Google Scholar
  198. 198.
    W.H. Zhu, Y.-G. Xi, Z.-J. Zhang, Z. Bien, J. De Schutter, Virtual decomposition based control for generalized high dimensional robotic systems with complicated structure. IEEE Trans. Robot. Autom. 13(3), 411–436 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Elettrica e dell’InformazioneUniversità di Cassino e Lazio MeridionaleCassinoItaly

Personalised recommendations