• Gianluca Antonelli
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 123)


It is during the fifteenth century that the systematic design of underwater vehicles starts engaging the scientists of the era. Figure 1.1 reports a draw by Roberto Valturio, an Italian historian lived from 1405 to 1475.


  1. 1.
    Eurobotics. Accessed 6 Apr 2017
  2. 2.
  3. 3.
    Graal Tech. Accessed 29 May 2017
  4. 4.
    Hydro-Lek. Accessed 26 May 2017
  5. 5.
    ISE. Accessed 26 May 2017
  6. 6.
    Kraft telerobotics. Accessed 26 May 2017
  7. 7.
    ROV Innovations. Accessed 26 May 2017
  8. 8.
    H. Al-Khatib, G. Antonelli, A. Caffaz, A. Caiti, G. Casalino, I. Bielic de Jong, H. Duarte, G. Indiveri, S. Jesus, K. Kebkal, A. Pascoal, D. Polani, The widely scalable mobile underwater sonar technology (wimust) project: an overview. In MTS/IEEE OCEANS 2015 (Genoa, I, May 2015)Google Scholar
  9. 9.
    A. Alessandri, M. Caccia, G. Indiveri, G. Veruggio, Application of LS and EKF techniques to the identification of underwater vehicles, in Proceedings of the 1998 IEEE International Conference on Control Applications, 1998 , vol 2 (Trieste, I, IEEE, 1998), pp. 1084–1088Google Scholar
  10. 10.
    G. Antonelli, Interconnected dynamic systems. An overview on distributed control. IEEE Control Syst. Mag. 33(1), 76–88 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    G. Antonelli, T. Fossen, D. Yoerger, Chapter underwater robotics, in Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Heidelberg, D, 2016)Google Scholar
  12. 12.
    Various Authors, IEEE standard ontologies for robotics and automation, in IEEE Standard (2015)Google Scholar
  13. 13.
    R. Bachmayer, L.L. Whitcomb, M.A. Grosenbaugh, An accurate four-quadrant nonlinear dynamical model for marine thrusters: theory and experimental validation. IEEE J. Ocean. Eng. 25(1), 146–159 (2000)CrossRefGoogle Scholar
  14. 14.
    A. Bahr, J.J. Leonard, M.F. Fallon, Cooperative localization for autonomous underwater vehicles. Int. J. Robot. Res. 28, 714–728 (2009). JuneGoogle Scholar
  15. 15.
    A. Balasuriya, T. Ura, Autonomous target tracking by Twin-Burger 2, in Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000. (IROS 2000), vol. 2 (IEEE, 2000), pp. 849–854Google Scholar
  16. 16.
    P. Bhatta, E. Fiorelli, F. Lekien, N. Leonard, D. Paley, F. Zhang, R. Bachmayer, R. Davis, D. Fratantoni, R. Sepulchre, Coordination of an underwater glider fleet for adaptive ocean sampling, in Proceedings IARP International Workshop on Underwater Robotics (Genova, I, 2005), pp. 61–69Google Scholar
  17. 17.
    M. Caccia, G. Indiveri, G. Veruggio, Modeling and identification of open-frame variable configuration unmanned underwater vehicles. IEEE J. Ocean. Eng. 25(2), 227–240 (2000)CrossRefGoogle Scholar
  18. 18.
    Y.U. Cao, A.S. Fukunaga, A.B. Kahng, Chapter cooperative mobile robotics: antecedents and directions, in Robot colonies. Special Issue of Autonomous Robots vol. 4, ed. by R.C. Arkin, G.A. Bekey (Kluwer Academic Publisher, March 1997), pp. 7–27Google Scholar
  19. 19.
    G. Casalino, M. Caccia, S. Caselli, C. Melchiorri, G. Antonelli, A. Caiti, G. Indiveri, G. Cannata, E. Simetti, S. Torelli, A. Sperindé, F. Wanderlingh, G. Muscolo, M. Bibuli, G. Bruzzone, E. Zereik, A. Odetti, E. Spirandelli, A. Ranieri, J. Aleotti, D.L. Rizzini, F. Oleari, F. Kallasi, G. Palli, U. Scarcia, L. Moriello, E. Cataldi, Underwater intervention robotics: an outline of the Italian national project MARIS. Marine Technol. Soc. J. 50(4), 98–107 (2016)CrossRefGoogle Scholar
  20. 20.
    D. Cecchi, A. Caiti, S. Fioravanti, F. Baralli, E. Bovio. Target detection using multiple autonomous underwater vehicles, in Proceedings IARP International Workshop on Underwater Robotics (Genova, I, 2005), pp. 161–168Google Scholar
  21. 21.
    H.T. Choi, A. Hanai, S.K. Choi, J. Yuh, Development of an underwater robot, ODIN-III, in Proceedings. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.(IROS 2003), vol. 1 (IEEE, 2003), pp. 836–841Google Scholar
  22. 22.
    H.T. Choi, J. Yuh, Chapter underwater robotics, in Springer Handbook of Robotics ed. by B. Siciliano, O. Khatib (Springer, Heidelberg, D, 2016)Google Scholar
  23. 23.
    M.R. Dhanak, N.I. Xiros, Springer Handbook of Ocean Engineering (Springer, 2016)Google Scholar
  24. 24.
    P. Di Lillo, E. Simetti, D. De Palma, E. Cataldi, G. Indiveri, G. Antonelli, G. Casalino, Advanced ROV autonomy for efficient remote control in the DexROV project. Marine Technol. Soc. J. 50(4), 67–80 (2016)CrossRefGoogle Scholar
  25. 25.
    S. Eiani-Cherif, G. Lebret, M. Perrier, Identification and control of a submarine vehicle, in Proceedings of the 5th IFAC Symposium on Robot Control (1997), pp. 327–332Google Scholar
  26. 26.
    M. Erol-Kantarci, H. Mouftah, S. Oktug, A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Commun. Surv. Tutor. 13(3), 487–502 (2011)CrossRefGoogle Scholar
  27. 27.
    M.D. Feezor, S.F. Yates, P. Blankinship, J. Bellingham, Autonomous underwater vehicle homing/docking via electromagnetic guidance. IEEE J. Ocean. Eng. 26(4), 515–521 (2001)CrossRefGoogle Scholar
  28. 28.
    J. Fernández, M. Prats, P. Sanz, J.C. García Sánchez, R. Marin, M. Robinson, D. Ribas, P. Ridao. Manipulation in the seabed: a new underwater robot arm for shallow water intervention. IEEE Robot. Autom. Mag. (2013)Google Scholar
  29. 29.
    J.J. Fernández, M. Prats, P.J. Sanz, J.C. García, R. Marin, M. Robinson, D. Ribas, P. Ridao, Grasping for the seabed: developing a new underwater robot arm for shallow-water intervention. IEEE Robot. Autom. Mag. 20(4), 121–130 (2013)CrossRefGoogle Scholar
  30. 30.
    E. Fiorelli, N. Leonard, P. Bhatta, D. Paley, R. Bachmayer, D. Fratantoni, Multi-AUV control and adaptive sampling in Monterey Bay. IEEE J. Ocean. Eng. 31(4), 935–948 (2006)CrossRefGoogle Scholar
  31. 31.
    T. Fossen, Guidance and Control of Ocean Vehicles (Chichester New York, 1994)Google Scholar
  32. 32.
    T. Fossen, Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles (Marine Cybernetics, Trondheim, Norway, 2002)Google Scholar
  33. 33.
    T. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control (Wiley, 2011)Google Scholar
  34. 34.
    A. Gadre, J. Mach, D. Stilwell, C.E. Wick, Design of a prototype miniature autonomous underwater vehicle, in Proceedings. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. (IROS 2003), vol. 1 (IEEE, 2003), pp. 842–846Google Scholar
  35. 35.
    A.S. Gadre, D.J. Stilwell, Underwater navigation in the presence of unknown currents based on range measurements from a single location, in Proceedings 2005 American Control Conference (Portland, OR, June 2005), pp. 565–661Google Scholar
  36. 36.
    J. Gancet, G. Antonelli, P. Weiss, A. Birk, S. Calinon, A. Turetta, C. Walen, D. Urbina, M. Ilzkovitz, P. Letier, F. Gauch, B. Chemisky, G. Casalino, G. Indiveri, M. Pfingsthorn, L. Guilpain, Dexrov: enabling effective dexterous ROV operations in presence of communication latencies, in MTS/IEEE OCEANS 2015 (Genoa, I, April 2015)Google Scholar
  37. 37.
    V. Gazi, K. Passino, Swarm Stability and Optimization (Springer, Heidelberg, D, 2010)Google Scholar
  38. 38.
    B. Gilmour, G. Niccum, T. O’Donnell, Field resident AUV systemschevron’s long-term goal for AUV development, in Autonomous Underwater Vehicles (AUV), 2012 IEEE/OES (IEEE, 2012), pp. 1–5Google Scholar
  39. 39.
    S. Gulati, K. Richmond, C. Flesher, A. Murarka B.P. Hogan, G. Kuhlmann, M. Sridharan, W.C. Stone, P.T. Doran, Toward autonomous scientific exploration of ice-covered lakesField experiments with the ENDURANCE AUV in an Antarctic Dry Valley, in 2010 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2010), pp. 308–315Google Scholar
  40. 40.
    A. Healey, Application of formation control for multi-vehicle robotic minesweeping, in Proceedings of the 40th IEEE Conference on Decision and Control, 2001 vol. 2 (IEEE, 2001), pp. 1497–1502Google Scholar
  41. 41.
    A. Healey, D. Lienard, Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18(3), 327–339 (1993)CrossRefGoogle Scholar
  42. 42.
    A. Healey, S.M. Rock, S. Cody, D. Miles, J.P. Brown, Toward an improved understanding of thruster dynamics for underwater vehicles. IEEE J. Ocean. Eng. 20(4), 354–361 (1995)CrossRefGoogle Scholar
  43. 43.
    H.-M Huang, E. Messina, J. Albus, Toward a generic model for autonomy levels for unmanned systems (ALFUS), in Performance Metrics for Intelligent Systems (PerMIS) Workshop, National Institute of Standards and Technology (Gaithersburg, MD, USA, 2003)Google Scholar
  44. 44.
    I. Ihle, R. Skjetne, T. Fossen, Nonlinear formation control of marine craft with experimental results, in CDC. 43rd IEEE Conference on Decision and Control, 2004, vol. 1 (IEEE, 2004), pp. 680–685Google Scholar
  45. 45.
    J. Kim, W.K. Chung, Accurate and practical thruster modeling for underwater vehicles. Ocean Eng. 33(5), 566–586 (2006)CrossRefGoogle Scholar
  46. 46.
    T.W. Kim, G. Marani, J. Yuh, Chapter underwater vehicle manipulators, in Springer Handbook of Ocean Engineering ed. by M.R. Dhanak, N.I. Xiros (Springer, Heidelberg, D, 2016), pp. 407–422Google Scholar
  47. 47.
    J.C. Kinsey, R.M. Eustice, L.L. Whitcomb, A survey of underwater vehicle navigation: recent advances and new challenges, in IFAC Conference of Manoeuvering and Control of Marine Craft (2006)Google Scholar
  48. 48.
    T.H. Koh, M.W.S. Lau, E. Low, G. Seet, S. Swei, P.L. Cheng. A study of the control of an underactuated underwater robotic vehicle, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, vol. 2 (IEEE, Lausanne, CH, 2002), pp. 2049–2054Google Scholar
  49. 49.
    R. Kumar, J. Stover, A behavior-based intelligent control architecture with application to coordination of multiple underwater vehicles. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 30(6), 767–784 (2000)Google Scholar
  50. 50.
    V. Kumar, D. Rus, S. Sukhatme, Chapter networked robots, in Springer Handbook of Robotics ed. by B. Siciliano, O. Khatib (Springer, Heidelberg, D, 2008), pp. 943–958Google Scholar
  51. 51.
    D. Lane, G. Bartolini, G. Cannata, G. Casalino, J.B.C. Davies, G. Veruggio, M. Canals, C. Smith, Advanced manipulation for deep underwater sampling: the AMADEUS research project, in Proceedings of the 1998 IEEE International Conference on Control Applications, 1998, vol. 2 (IEEE, 1998), pp. 1068–1073Google Scholar
  52. 52.
    M.B. Larsen, Synthetic long baseline navigation of underwater vehicles, in Proceedings MTS/IEEE Conference Oceans, 2000 (2000), pp. 2043–2050Google Scholar
  53. 53.
    J.J. Leonard, A. Bahr. Autonomous underwater vehicle navigation. in Springer Handbook of Ocean Engineering (Springer, 2016), pp. 341–358Google Scholar
  54. 54.
    N. Leonard, E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups, in Proceedings of the 40th IEEE Conference on Decision and Control, 2001, vol. 3 (IEEE, 2001), pp. 2968–2973Google Scholar
  55. 55.
    N. Leonard, D. Paley, R. Davis, D. Fratantoni, F. Lekien, F. Zhang, Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Robot. 27(6), 718–740 (2010)CrossRefGoogle Scholar
  56. 56.
    S. Majumder, S. Scheding, H.F. Durrant-Whyte, Multisensor data fusion for underwater navigation. Robot. Auton. Syst. 35(2), 97–108 (2001)CrossRefzbMATHGoogle Scholar
  57. 57.
    T. Maki, T. Matsuda, T. Sakamaki, T. Ura, J. Kojima, Navigation method for underwater vehicles based on mutual acoustical positioning with a single seafloor station. IEEE J. Ocean. Eng. 38(1), 167–177 (2013)CrossRefGoogle Scholar
  58. 58.
    G. Marani, S.K. Choi, J. Yuh, Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng. 36(1), 15–23 (2009)CrossRefGoogle Scholar
  59. 59.
    G. Marani, J. Yuh, Introduction to Autonomous Manipulation: Case Study with an Underwater Robot, SAUVIM, vol. 102 (Springer, 2014)Google Scholar
  60. 60.
    G. Marani, J. Yuh, S.K. Choi, Autonomous manipulation for an intervention AUV. IEE Control Eng. Ser. 69, 217 (2006)Google Scholar
  61. 61.
    D. Marco, A. Healey, Command, control, and navigation experimental results with the NPS ARIES AUV. IEEE J. Ocean. Eng. 26(4), 466–476 (2001)CrossRefGoogle Scholar
  62. 62.
    S.C. Martin, L.L. Whitcomb, Preliminary experiments in comparative experimental identification of six degree-of-freedom coupled dynamic plant models for underwater robot vehicles, in Proceedings. ICRA’13. IEEE International Conference on Robotics and Automation, 2013 (IEEE, 2013), pp. 2947–2954Google Scholar
  63. 63.
    C.J. McFarland, L.L. Whitcomb, Comparative experimental evaluation of a new adaptive identifier for underwater vehicles, in Proceedings. ICRA’13. IEEE International Conference on Robotics and Automation, 2013 (IEEE, 2013), pp. 4599–4605Google Scholar
  64. 64.
    N. Palomeras, A. El-Fakdi, M. Carreras, P. Ridao, COLA2: A control architecture for AUVs. IEEE J. Ocean. Eng. 37(4), 695–716 (2012)CrossRefGoogle Scholar
  65. 65.
    J.Y. Park, B.H. Jun, P.M. Lee, J. Oh, Experiments on vision guided docking of an autonomous underwater vehicle using one camera. Ocean Eng. 36(1), 48–61 (2009)CrossRefGoogle Scholar
  66. 66.
    L.E. Parker, Distributed intelligence: overview of the field and its application in multi-robot systems. J. Phys. Agents 2(1), 5 (2008)Google Scholar
  67. 67.
    L.E. Parker, Chapter multiple mobile robot systems, in Springer Handbook of Robotics ed. by B. Siciliano, O. Khatib (Springer, Heidelberg, D, 2008), pp. 921–941Google Scholar
  68. 68.
    Liam Paull, Sajad Saeedi, Mae Seto, Howard Li, Auv navigation and localization: a review. IEEE J. Ocean. Eng. 39(1), 131–149 (2014)CrossRefGoogle Scholar
  69. 69.
    D. Pompili, I. Akyildiz, Overview of networking protocols for underwater wireless communications. IEEE Commun. Mag. 47(1), 97–102 (2009)CrossRefGoogle Scholar
  70. 70.
    M. Prats, D. Ribas, N. Palomeras, J.C. García, V. Nannen, S. Wirth, J.J. Fernández, J.P. Beltrán, R. Campos, P. Ridao et al., Reconfigurable AUV for intervention missions: a case study on underwater object recovery. Intell. Serv. Robot. 5(1), 19–31 (2012)CrossRefGoogle Scholar
  71. 71.
    D. Ribas, N. Palomeras, P. Ridao, M. Carreras, A. Mallios, Girona 500 AUV: from survey to intervention. IEEE/ASME Trans. Mechatron. 17(1), 46–53 (2012)CrossRefGoogle Scholar
  72. 72.
    D. Ribas, P. Ridao, A. Turetta, C. Melchiorri, G. Palli, J.J. Fernández, P.J. Sanz, I-AUV mechatronics integration for the TRIDENT FP7 project. IEEE/ASME Trans. Mechatron. 20(5), 2583–2592 (2015)CrossRefGoogle Scholar
  73. 73.
    P. Ridao, A. Tiano, A. El-Fakdi, M. Carreras, A. Zirilli, On the identification of non-linear models of unmanned underwater vehicles. Control Eng. Pract. 12(12), 1483–1499 (2004)CrossRefGoogle Scholar
  74. 74.
    P.J. Sanz, P. Ridao, G. Oliver, C. Insaurralde, G. Casalino, C. Silvestre, C. Melchiorri, A. Turetta, TRIDENT: recent improvements about intervention missions, in IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles (NGCUV2012) (2012)Google Scholar
  75. 75.
    P.J. Sanz, P. Ridao, G. Oliver, C. Melchiorri, G. Casalino, C. Silvestre, Y. Petillot, A. Turetta, TRIDENT: a framework for autonomous underwater intervention missions with dexterous manipulation capabilities, in Proceedings of the 7th Symposium on Intelligent Autonomous Vehicles IAV-2010. IFAC (2010)Google Scholar
  76. 76.
    E. Simetti, G. Casalino, Manipulation and transportation with cooperative underwater vehicle manipulator systems. IEEE J. Ocean. Eng. (2016)Google Scholar
  77. 77.
    E. Simetti, G. Casalino, S. Torelli, A. Sperindé, A. Turetta, Floating underwater manipulation: developed control methodology and experimental validation within the TRIDENT project. J. Field Robot. 31(3), 364–385 (2013)CrossRefGoogle Scholar
  78. 78.
    D.A. Smallwood, L.L. Whitcomb, The effect of model accuracy and thruster saturation on tracking performance of model based controllers for underwater robotic vehicles: experimental results, in IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA’02, vol. 2 (IEEE, Washington, DC, 2002), pp. 1081–1087Google Scholar
  79. 79.
    D.A. Smallwood, L.L. Whitcomb, Adaptive identification of dynamically positioned underwater robotic vehicles. IEEE Trans. Control Syst. Technol. 11(4), 505–515 (2003)CrossRefGoogle Scholar
  80. 80.
    D.A. Smallwood, L.L. Whitcomb, Model-based dynamic positioning of underwater robotic vehicles: theory and experiment. IEEE J. Ocean. Eng. 29(1), 169–186 (2004)CrossRefGoogle Scholar
  81. 81.
    D. Stilwell, Decentralized control synthesis for a platoon of autonomous vehicles, in Proceedings. ICRA’02. IEEE International Conference on Robotics and Automation, 2002, vol. 1 (IEEE, 2002), pp. 744–749Google Scholar
  82. 82.
    D. Stilwell, B. Bishop, Platoons of underwater vehicles. IEEE Control Syst. 20(6), 45–52 (2000)CrossRefGoogle Scholar
  83. 83.
    M. Stojanovic, J. Preisig, Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Commun. Mag. 47(1), 84–89 (2009)CrossRefGoogle Scholar
  84. 84.
    C.L. Tsukamoto, W. Lee, J. Yuh, S.K. Choi, J. Lorentz, Comparison study on advanced thruster control of underwater robots, in Proceedings., 1997 IEEE International Conference on Robotics and Automation, 1997, vol. 3 (IEEE, 1997), pp. 1845–1850Google Scholar
  85. 85.
    T. Ura, Steps to intelligent AUVs, in 6 th IFAC Conference on Manoeuvring and Control of Marine Craft, Girona, Spain (2003)Google Scholar
  86. 86.
    K. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru, G.A. Demetriou, Control architectures for autonomous underwater vehicles. IEEE Control Syst. 17(6), 48–64 (1997)CrossRefGoogle Scholar
  87. 87.
    S.E. Webster, R.M. Eustice, H. Singh, L.L. Whitcomb, Preliminary deep water results in single-beacon one-way-travel-time acoustic navigation for underwater vehicles, in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2009), pp. 2053–2060Google Scholar
  88. 88.
    L.L. Whitcomb, D. Yoerger, Development, comparison, and preliminary experimental validation of nonlinear dynamic thruster models. IEEE J. Ocean. Eng. 24(4), 481–494 (1999)CrossRefGoogle Scholar
  89. 89.
    D. Yoerger, J.G. Cooke, J.J. Slotine, The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE J. Ocean. Eng. 15(3), 167–178 (1990)CrossRefGoogle Scholar
  90. 90.
    D. Youakim, P. Ridao, N. Palomeras, F. Spadafora, D. Ribas, M. Muzzupappa, Autonomous underwater free-floating manipulation using MoveIt! IEEE Robot. Autom. Mag. (2017)Google Scholar
  91. 91.
    S.C. Yu, J. Yuh, J. Kim, Armless underwater manipulation using a small deployable agent vehicle connected by a smart cable. Ocean Eng. 70, 149–159 (2013)CrossRefGoogle Scholar
  92. 92.
    J. Yuh, Development in underwater robotics, in Proceedings, 1995 IEEE International Conference on Robotics and Automation, 1995, vol. 2 (IEEE, 1995), pp. 1862–1867Google Scholar
  93. 93.
    J. Yuh, Exploring the mysterious underwater world with robots, in 6 th IFAC Conference on Manoeuvring and Control of Marine Craft, Girona, Spain (2003)Google Scholar
  94. 94.
    J. Yuh, M. West, Underwater robotics. Adv. Robot. 15(5), 609–639 (2001)CrossRefGoogle Scholar
  95. 95.
    S. Zhao, J. Yuh, Experimental study on advanced underwater robot control. IEEE Trans. Robot. 21(4), 695–703 (2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Elettrica e dell’InformazioneUniversità di Cassino e Lazio MeridionaleCassinoItaly

Personalised recommendations