Elements of Hamiltonian Mechanics and Electromagnetism

  • Alessandro Teta
Part of the UNITEXT for Physics book series (UNITEXTPH)


We recall some basic notions of Classical Physics useful to understand the birth and the formulation of Quantum Mechanics. We introduce Hamilton’s equations of motion and discuss the main properties of Poisson brackets, canonical transformations, Hamilton–Jacobi method, and separation of variables. We study Liouville’s equation and its relation with the evolution laws of states and observables. The laws of Geometrical Optics are formulated via Fermat’s principle and the analogy with Classical Mechanics is discussed. Concerning Electromagnetism, we recall Maxwell’s equations and describe some properties of the electromagnetic field in vacuum and in inhomogeneous media. In particular, we discuss the short wavelength limit of Wave Optics. The chapter is intended as a short review, some topics are discussed using only heuristic arguments and there is no pretense of completeness.


  1. 1.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer-Verlag, New York (1989)Google Scholar
  2. 2.
    Born, M., Wolf, E.: Principles of Optics. University Press, Cambridge (1999)Google Scholar
  3. 3.
    Buttà, P., Negrini, P.: Note del Corso di Sistemi Dinamici (2008). (in Italian).
  4. 4.
    Dell’Antonio, G.: Elementi di Meccanica (in Italian). Liguori Editore, Napoli (1996)Google Scholar
  5. 5.
    Esposito, R.: Appunti dalle Lezioni di Meccanica Razionale (in Italian). Aracne, Roma (1999)Google Scholar
  6. 6.
    Faddeev, L.D., Yakubovskii, O.A.: Lectures on Quantum Mechanics for Mathematics Students. AMS (2009)Google Scholar
  7. 7.
    Fasano, A., Marmi, S.: Analytical Mechanics. Oxford University Press, New York (2006)Google Scholar
  8. 8.
    Gallavotti, G.: The Elements of Mechanics. Springer-Verlag, New York (1983)Google Scholar
  9. 9.
    Gantmacher, F.: Lectures in Analytical Mechanics. Mir Publishers, Moscow (1975)Google Scholar
  10. 10.
    Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1962)Google Scholar
  11. 11.
    Josè, J.V., Saletan, E.J.: Classical Dynamics: A Contemporary Approach. University Press, Cambridge (1998)Google Scholar
  12. 12.
    Kravtsov, YuA, Orlov, YuI: Geometrical Optics of Inhomogeneous Media. Springer-Verlag, Berlin Heidelberg (1990)Google Scholar
  13. 13.
    Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon Press, Oxford (1976)Google Scholar
  14. 14.
    Someda, C.G.: Electromagnetic Waves. CRC Press, New York (2006)Google Scholar
  15. 15.
    Strocchi, F.: An Introduction to the Mathematical Structure of Quantum Mechanics, 2th edition. World Scientific, Singapore (2008)Google Scholar
  16. 16.
    Stroffolini, R.: Lezioni di Elettrodinamica (in Italian). Bibliopolis, Napoli (2001)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica Guido CastelnuovoUniversità degli Studi di Roma “La Sapienza”RomeItaly

Personalised recommendations